【題目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)求證:AC1∥平面B1CD
【答案】證明:(Ⅰ)在△ABC中,因?yàn)锳B=5,AC=4,BC=3,
所以AC⊥BC.
因?yàn)橹比庵鵄BC﹣A1B1C1 , 所以,CC1⊥AC.
因?yàn)锽C∩AC=C,所以AC⊥平面BB1C1C.
所以AC⊥B1C.
(Ⅱ)連接BC1 , 交B1C于E.
因?yàn)橹比庵鵄BC﹣A1B1C1 ,
所以側(cè)面BB1C1C為矩形,且E為B1C中點(diǎn).
又D是AB中點(diǎn),所以DE為△ABC1的中位線(xiàn),所以DE∥AC1 .
因?yàn)镈E平面B1CD,AC1平面B1CD,
所以,AC1∥平面B1CD.
【解析】(Ⅰ) 利用勾股定理可得AC⊥BC,由直三棱柱的性質(zhì)可得CC1⊥AC,從而得到AC⊥平面BB1C1C,進(jìn)而得到AC⊥B1C.
(Ⅱ) 取B1C中點(diǎn)E,得到 DE為△ABC1的中位線(xiàn),得到DE∥AC1 , 由線(xiàn)面平行的判定定理證得AC1∥平面B1CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)函數(shù),,求函數(shù)的最小值;
(2)對(duì)任意,都有成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】8人排成一排照相,分別求下列條件下的不同照相方式的種數(shù).
(1)其中甲、乙相鄰,丙、丁相鄰;
(2)其中甲、乙不相鄰,丙、丁不相鄰;
(要求寫(xiě)出解答過(guò)程,并用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知a=3,cos A=,B=A+.
(1)求b的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空間四邊形PABC的各邊及對(duì)角線(xiàn)長(zhǎng)度都相等,D、E、F、G分別是AB、BC、CA、AP的中點(diǎn),下列四個(gè)結(jié)論中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 底面為菱形,平面,點(diǎn)在棱上.
(Ⅰ)求證:直線(xiàn)平面;
(Ⅱ)若平面,求證:;
(Ⅲ)是否存在點(diǎn),使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩定點(diǎn), 和一動(dòng)點(diǎn),給出下列結(jié)論:
①若,則點(diǎn)的軌跡是橢圓;
②若,則點(diǎn)的軌跡是雙曲線(xiàn);
③若,則點(diǎn)的軌跡是圓;
④若,則點(diǎn)的軌跡關(guān)于原點(diǎn)對(duì)稱(chēng);
⑤若直線(xiàn)與斜率之積等于,則點(diǎn)的軌跡是橢圓(除長(zhǎng)軸兩端點(diǎn)).
其中正確的是__________(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題的真假,并說(shuō)明理由.
(1)x∈R,都有x2-x+1>;
(2)α,β,使cos(α-β)=cos α-cos β;
(3)x,y∈N,都有(x-y)∈N;
(4)x,y∈Z,使x+y=3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【廣西南寧2017屆高三檢測(cè)】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購(gòu)物者的年齡情況如圖.
(1)已知、,三個(gè)年齡段的上網(wǎng)購(gòu)物者人數(shù)成等差數(shù)列,求,的值;
(2)該電子商務(wù)平臺(tái)將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放80元的代金券,已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)物者中抽取了10人,現(xiàn)在要在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com