已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9n,若其第K項(xiàng)滿足5<ak<8,那么k的值等于
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件求出an=2n-10,由此利用5<ak<8,能求出k的值.
解答: 解:∵數(shù)列{an}的前n項(xiàng)和Sn=n2-9n,
∴a1=S1=1-9=-8,
an=Sn-Sn-1=(n2-9n)-[(n-1)2-9(n-1)]
=2n-10,
n=1時(shí),上式成立,∴an=2n-10,
∵5<ak<8,
∴5<2k-10<8,解得
15
2
<k<9
,
∵k∈N*,∴k=8.
故答案為:8.
點(diǎn)評(píng):本題考查k的值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意an=
S1,n=1
Sn-Sn-1,n≥2
的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax,g(x)=-ax(
1
2
x-1)+1
(Ⅰ)已知區(qū)間[-1,1]是不等式f(x)>0的解集的子集,求a的取值范圍;
(Ⅱ)已知函數(shù)φ(x)=f(x)+g(x),在函數(shù)y=φ(x)圖象上任取兩點(diǎn)A(x1,y1),B(x2,y2),若存在a使得y1-y2≤m(x1-x2)恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+a(x-1)2,其中a為常數(shù).
(1)若f(x)在x=2處有極值,求a的值,并說明該極值是極大值還是極小值;
(2)若函數(shù)f(x)的圖象當(dāng)x>1時(shí)總在直線y=x-1的上方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)x>1時(shí),f(x)>0,且f(
x
y
)=f(x)-f(y),若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(1+x)n的展開式中,若第3項(xiàng)與第6項(xiàng)系數(shù)相等,且n等于多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從正方體的8個(gè)頂點(diǎn)中,任意選擇4個(gè)頂點(diǎn),則這四個(gè)點(diǎn)可能是
①矩形的四個(gè)頂點(diǎn);
②有三個(gè)面為等腰直角三角形,另一個(gè)面為等邊三角形的四面體的四個(gè)頂點(diǎn);
③每個(gè)面都是等邊三角形的四面體的四個(gè)頂點(diǎn);
④每個(gè)面都是直角三角形的四面體的四個(gè)頂點(diǎn).
其中正確的結(jié)論是
 
.(請(qǐng)把所有正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖,圓O的內(nèi)接三角形ABC中,AB=9,AC=6,高AD=
27
5
,則圓O的直徑AE的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x2與其在x=±1處的切線所圍成的圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體AC1的棱長(zhǎng)為1,點(diǎn)P是面AA1D1D的中心,點(diǎn)Q是面A1B1C1D1的對(duì)角線B1D1上一點(diǎn),且PQ∥平面AA1B1B,則線段PQ的長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案