.設(shè)是橢圓上的兩點(diǎn),點(diǎn)是線段的中點(diǎn),線段的垂直平分線與橢圓相交于兩點(diǎn).
(1)確定的取值范圍,并求直線的方程;
(2)試判斷是否存在這樣的,使得四點(diǎn)在同一個(gè)圓上?并說(shuō)明理由.
 
(1)解法一:設(shè)直線的方程為,代入 
整理得     ①
設(shè),,②

是線段的中點(diǎn),得,解得,代入②得
所以直線的方程為,即                     (5分)
解法二:設(shè),(點(diǎn)差)則有,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823174054905439.gif" style="vertical-align:middle;" />是線段的中點(diǎn),
在橢圓內(nèi)部,
,即
所以直線的方程為,即
(1)      解法一:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823174055872250.gif" style="vertical-align:middle;" />垂直平分
(2)      所以直線的方程為,即,代入橢圓方程,整理得
設(shè)的中點(diǎn),
,即,
由弦長(zhǎng)公式得③,
將直線的方程代入橢圓方程得④,
同理可得⑤        (9分)
因?yàn)楫?dāng)時(shí),,所以
假設(shè)存在,使四點(diǎn)共圓,則必為圓的直徑,點(diǎn)為圓心。點(diǎn)到直線的距離⑥,
于是
故當(dāng)時(shí),在以為圓心,為半徑的圓上            (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的離心率,則的取值范圍為_(kāi)____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是橢圓上的兩點(diǎn),點(diǎn)是線段的中點(diǎn),
線段的垂直平分線與橢圓相交于兩點(diǎn).
(1)確定的取值范圍,并求直線的方程;
(2)試判斷是否存在這樣的,使得四點(diǎn)在同一個(gè)圓上?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題14分)橢圓的一個(gè)頂點(diǎn)為,離心率
(1)求橢圓方程;
(2)若直線與橢圓交于不同的兩點(diǎn),且滿足,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

. 已知,動(dòng)點(diǎn)滿足.
(1)求動(dòng)點(diǎn)的軌跡方程.
(2)設(shè)動(dòng)點(diǎn)的軌跡方程與直線交于兩點(diǎn),為坐標(biāo)原點(diǎn)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓的焦距是2,則的值為(   )
A.9B.16C.7D.9或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的四個(gè)頂點(diǎn)為A、B、C、D,若四邊形ABCD的內(nèi)切圓恰好過(guò)焦點(diǎn),則橢圓的離心率為(      )
A.     B.       C.     D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦點(diǎn)是(-3,0(3,0),P為橢圓上一點(diǎn),且的等差中項(xiàng),則橢圓的方程為_(kāi)__________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若方程表示橢圓,則實(shí)數(shù)的取值范圍是____________________;

查看答案和解析>>

同步練習(xí)冊(cè)答案