設(shè)函數(shù)f(x)的定義域是(0,+∞),對(duì)任意正實(shí)數(shù)m,n恒有f(mn)=f(m)+f(n),且當(dāng)x>1時(shí),f(x)<0,f(2)=-1
(1)求f(1)和f(
12
)的值;
(2)求證:f(x)在(0,+∞)上是減函數(shù).
分析:(1)利用賦值法,對(duì)于任意正實(shí)數(shù)m,n恒有f(mn)=f(m)+f(n),可令m=n=1,先求出f(1),然后令 m=2,n=
1
2
,即可求出 f(
1
2
)
的值;
(2)先在定義域內(nèi)任取兩個(gè)值x1,x2,并規(guī)定大小,然后判定出f(x1),與f(x2)的大小關(guān)系,根據(jù)單調(diào)增函數(shù)的定義可知結(jié)論;
解答:解:(1)令m=n=1,則f(1)=f(1)+f(1),
∴f(1)=0(2分)
m=2,n=
1
2
,則 f(1)=f(2×
1
2
)=f(2)+f(
1
2
)
,
f(
1
2
)=f(1)-f(2)=1
(4分)

(2)設(shè)0<x1<x2,則
x2
x1
>1

∵當(dāng)x>1時(shí),f(x)<0
f(
x2
x1
)<0
(6分)
f(x2)=f(x1×
x2
x1
)=f(x1)+f(
x2
x1
)<f(x1)
(9分)
所以f(x)在(0,+∞)上是減函數(shù)(10分).
點(diǎn)評(píng):本題主要考查了抽象函數(shù)及其應(yīng)用,以及函數(shù)單調(diào)性的判斷與證明,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
1
4
]
時(shí),f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省月考題 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

查看答案和解析>>

同步練習(xí)冊(cè)答案