【題目】在平面直角坐標(biāo)系中,設(shè)橢圓.

(1)過橢圓的左焦點,作垂直于軸的直線交橢圓、兩點,若,求實數(shù)的值;

(2)已知點,、是橢圓上的動點,,求的取值范圍;

(3)若直線與橢圓交于、兩點,求證:對任意大于3的實數(shù),以線段為直徑的圓恒過定點,并求該定點的坐標(biāo).

【答案】(1);(2);(3)證明見解析,.

【解析】

1)由橢圓的方程可得左焦點坐標(biāo),再由的長可得縱坐標(biāo),即橢圓過,代入橢圓的方程求出的值;

2代入橢圓可得橢圓的標(biāo)準(zhǔn)形式,設(shè)的坐標(biāo),中的向量表示,再由題意可得關(guān)于的坐標(biāo)的關(guān)系,由的坐標(biāo)的范圍求出數(shù)量積的取值范圍;

3)將直線與橢圓聯(lián)立求出兩根之和及兩根之積,進(jìn)而求出的中點的坐標(biāo),及弦長,求出以線段為直徑的圓的方程,整理出關(guān)于的二次三項式恒為0,可得的所有系數(shù)都為0,可得,的值,即圓恒過的定點坐標(biāo).

1)由題意可得:,即左焦點為:,若,所以,將,代入橢圓可得:,又解得:;

2時,橢圓的方程為:,設(shè),,

,由題意可得:

,由,

所以,

3)聯(lián)立直線與橢圓的方程可得:,解得,,設(shè),,所以的中點為:,,

,

所以以線段為直徑的圓的方程為:

,

整理可得:,

,

整理可得:,

對于任意的,關(guān)于的二次三項式恒為0,

所以二次項,一次項和常數(shù)項的系數(shù)均為0,即,

所以,,

即定點坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.

(1)求實數(shù)a的值;

(2)設(shè)g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量(單位:千萬件)的影響,統(tǒng)計了近年投入的年研發(fā)費用與年銷售量的數(shù)據(jù),得到散點圖如圖所示:

(Ⅰ)利用散點圖判斷,(其中,為大于的常數(shù))哪一個更適合作為年研發(fā)費用和年銷售量的回歸方程類型(只要給出判斷即可,不必說明理由);

(Ⅱ)對數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計量的值如下表:

根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

(Ⅲ)已知企業(yè)年利潤(單位:千萬元)與,的關(guān)系為(其中),根據(jù)(Ⅱ)的結(jié)果,要使得該企業(yè)下一年的年利潤最大,預(yù)計下一年應(yīng)投入多少研發(fā)費用?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點,直線,動直線垂直于點,線段的垂直平分線交于點,設(shè)點的軌跡為

(Ⅰ)求曲線的方程;

(Ⅱ)以曲線上的點為切點做曲線的切線,設(shè)分別與、軸交于兩點,且恰與以定點為圓心的圓相切.當(dāng)圓的面積最小時,求面積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,的中點,的中點.

1)求異面直線所成角的大;

2)若直三棱柱的體積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于兩點.

1)求證:若直線過拋物線的焦點,則;

2)寫出(1)的逆命題,判斷真假,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201616日北京時間上午1130分,朝鮮中央電視臺宣布成功進(jìn)行了氫彈試驗,再次震動世界,此事件也引起了我國公民熱議,其中丹東市(丹東市和朝鮮隔江)某QQ聊天群有300名網(wǎng)友,烏魯木齊市某微信群有200名網(wǎng)友,為了解不同地區(qū)我國公民對氫彈試驗事件的關(guān)注程度,現(xiàn)采用分層抽樣的方法,從中抽取了100名網(wǎng)友,先分別統(tǒng)計了他們在某時段發(fā)表的信息條數(shù),再將兩地網(wǎng)友發(fā)表的信息條數(shù)分成5組:,,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

1)求丹東市網(wǎng)友的平均留言條數(shù)(保留整數(shù));

2)為了進(jìn)一步開展調(diào)查,從樣本中留言條數(shù)超過80條的網(wǎng)友中隨機抽取2人,求至少抽到一名烏魯木齊市網(wǎng)友的概率;

3)規(guī)定留言條數(shù)不少于70條為強烈關(guān)注”.

①請你根據(jù)已知條件完成下列2×2的列聯(lián)表:

強烈關(guān)注

非強烈關(guān)注

合計

丹東市

烏魯木齊市

合計

②判斷是否有90%的把握認(rèn)為強烈關(guān)注與網(wǎng)友所在的地區(qū)有關(guān)?

附:臨界值表及參考公式:

,.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種類型的題目有,,,,5個選項,其中有3個正確選項,滿分5分.賦分標(biāo)準(zhǔn)為“選對1個得2分,選對2個得4分,選對3個得5分,每選錯1個扣3分,最低得分為0分”在某校的一次考試中出現(xiàn)了一道這種類型的題目,已知此題的正確答案為,假定考生作答的答案中的選項個數(shù)不超過3個.

(1)若甲同學(xué)無法判斷所有選項,他決定在這5個選項中任選3個作為答案,求甲同學(xué)獲得0分的概率;

(2)若乙同學(xué)只能判斷選項是正確的,現(xiàn)在他有兩種選擇:一種是將AD作為答案,另一種是在這3個選項中任選一個與組成一個含有3個選項的答案,則乙同學(xué)的最佳選擇是哪一種,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案