某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。
(2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得最大利潤,其最大利潤約為多少萬元。(精確到1萬元)。

(1)A利潤的函數(shù)為
B利潤的函數(shù)為
(2)設(shè)為投資10萬元的總利潤,其中萬元投入產(chǎn)品

兩產(chǎn)品分別投資萬元時,可獲得最大利潤為萬元。

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)某商品在近30天內(nèi)每件的銷售價格(元)與時間(天)的函數(shù)關(guān)系是 該商品的日銷售量(件)與時間(天)的函數(shù)關(guān)系是,求這種商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)x2+2x-5,x∈[tt+1],若f(x)的最小值為h(t),寫出h(t)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).當0≤x≤200時,求函數(shù)v(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(Ⅰ)計算:lg2+-÷;
(Ⅱ)已知lga+lgb=21g(a-2b),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)>0)的值域為6,+∞,求的值;
(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)已知函數(shù)f(x)=ax+(x≠0,常數(shù)a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說明理由;
(2)若函數(shù)f(x)在x∈[3,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設(shè)函數(shù),則的極小值點為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
,其中
(1)若為偶函數(shù),求a的值;
(2)命題p:函數(shù)上是增函數(shù),命題q:函數(shù)是減函數(shù),如果p或q為真,p且q為假,求a的取值范圍。
(3)在(2)的條件下,比較的大小。

查看答案和解析>>

同步練習冊答案