在平面上,我們用一直線去截正方形的一個角,那么截下的一個直角三角形,按如圖所標邊長,由勾股定理有.設想正方形換成正方體,把截線換成如圖截面,這時從正方體上截下三條側棱兩兩垂直的三棱錐,如果用表示三個側面面積,表示截面面積,那么類比得到的結論是 .
科目:高中數(shù)學 來源: 題型:單選題
有一段演繹推理是這樣的“有些有理數(shù)是真分數(shù),整數(shù)是有理數(shù),則整數(shù)是真分數(shù)”該結論顯然是錯誤的,其原因是
A.大前提錯誤 | B.小前提錯誤 | C.推理形式錯誤 | D.非以上錯誤 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
用分別表示中的最大與最小者,有下列結論:
①;
②;
③若,則;
④若,則。
其中正確結論的個數(shù)是( )
A.0 | B.1 | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
1955年,印度數(shù)學家卡普耶卡(D.R.Kaprekar)研究了對四位自然數(shù)的一種交換:任給出四位數(shù),用的四個數(shù)字由大到小重新排列成一個四位數(shù)m,再減去它的反序數(shù)n(即將的四個數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運算,比如0001,計算時按1計算),得出數(shù),然后繼續(xù)對重復上述變換,得數(shù),…,如此進行下去,卡普耶卡發(fā)現(xiàn),無論是多大的四位數(shù),只要四個數(shù)字不全相同,最多進行k次上述變換,就會出現(xiàn)變換前后相同的四位數(shù)t(這個數(shù)稱為Kaprekar變換的核).通過研究10進制四位數(shù)2014可得Kaprekar變換的核為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com