求使函數(shù)y=的值域?yàn)?/span>(,2)a的取值范圍.

 

答案:
解析:

<2,

x2x+1=(x)2>0,

x2ax-2<2(x2x+1),即x2-(a+2)x+4>0,此不等式恒成立的條件是

△=[-(a+2)]2-4·1·4<0,解得-6<a<2.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)讀圖分析解答:設(shè)定義在閉區(qū)間[-4,4]上的函數(shù)y=f(x)的圖象如圖所示(圖中坐標(biāo)點(diǎn)都是實(shí)心點(diǎn)),完成以下幾個(gè)問(wèn)題:
(1)x∈[-2,3]時(shí),y的取值范圍是
 

(2)該函數(shù)的值域?yàn)?!--BA-->
 

(3)若y=f(x)的定義域?yàn)閇-4,4],則函數(shù)y=f(x+1)的定義域?yàn)?!--BA-->
 

(4)寫出該函數(shù)的一個(gè)單調(diào)增區(qū)間為
 

(5)使f(x)=3(x∈[-4,4])的x的值有
 
個(gè).
(6)函數(shù)y=f(x)是區(qū)間x∈[-4,4]的
 
函數(shù).(填“奇”;“偶”或“非奇非偶”)
(7)若方程f(x)=5-3a在區(qū)間[-4,4]上有且只有三個(gè)解,求f(a)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域?yàn)閰^(qū)間D,是否存在常數(shù)t,使區(qū)間D的長(zhǎng)度為7-2t?若存在,求出所有t的值;若不存在,請(qǐng)說(shuō)明理由(注:區(qū)間[p,q]的長(zhǎng)度為q-p).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)(x∈D,D為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:①函數(shù)f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間[a,b]⊆D,使函數(shù)f(x)在區(qū)間[a,b]上的值域?yàn)閇a,b],那么稱y=f(x),x∈D為閉函數(shù);請(qǐng)解答以下問(wèn)題:
(1)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)=
3
4
x+
1
x
(x∈(0,+∞))
是否為閉函數(shù)?并說(shuō)明理由;
(3)若y=k+
x
(k<0)
是閉函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

求使函數(shù)y=的值域?yàn)?/span>(,2)a的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案