現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽查了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表并問是否有99%的把握認(rèn)為“月收入以5500為分界點(diǎn)對(duì)“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) 月收入低于55百元的人數(shù) 合計(jì)
贊成 a= c=
不贊成 b= d=
合計(jì)
(Ⅱ)若對(duì)月收入在[15,25),[25,35)的被調(diào)查人中各隨機(jī)選取1人進(jìn)行追蹤調(diào)查,求選中的2人中不贊成“樓市限購令”人數(shù)至多1人的概率.
參考數(shù)據(jù):K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
 
P(K2≥k) 0.100  0.050  0.025  0.010  0.001
k 2.706  3.841  5.024  6.635  10.828
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(I)根據(jù)提供數(shù)據(jù),可填寫表格,利用公式,可計(jì)算K2的值,根據(jù)臨界值表,即可得到結(jié)論;
(II)利用古典概型概率公式,即可得出結(jié)論..
解答: 解:(Ⅰ)2×2列聯(lián)表
月收入不低于55百元人數(shù) 月收入低于55百元人數(shù) 合計(jì)
贊成 a=3 c=29 32
不贊成 b=7 d=11 18
合計(jì) 10 40 50
…(2分)
K2=
50×(3×11-7×29)2
10×40×32×18
≈6.27<6.635.
所以沒有99%的把握認(rèn)為月收入以5500為分界點(diǎn)對(duì)“樓市限購令”的態(tài)度有差異.…(6分)
(Ⅱ)從月收入在[15,25),[25,35)的被調(diào)查人中各隨機(jī)選取1人,共有50種取法…(8分)
其中恰有兩人都不贊成“樓市限購令”共有2種取法,…(10分)
所以至多1人不贊成“樓市限購令”共有48種方法,所以P=
48
50
=
24
25
…(12分)
點(diǎn)評(píng):本題考查古典概型的計(jì)算,以及獨(dú)立性檢驗(yàn)的應(yīng)用和2×2列聯(lián)表的作法,注意從題干表格中分析得到數(shù)據(jù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α:|z|≤1,z∈C,β:|z-i|≤a,z∈C.若α是β的充分非必要條件,則實(shí)數(shù)a的取值范圍是( 。
A、a≥1B、a≤1
C、a≥2D、a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x-
π
3

(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求方程f(x)=-2的解集;
(3)若α∈[-π,π],且f(α)=1,求α的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列各函數(shù)的導(dǎo)數(shù).
(1)y=(2x2+3)(3x-1);
(2)y=lnx+
1
x
-
x

(3)y=xcos(2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的面積為
3
,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點(diǎn),證明:點(diǎn)O到直線AB的距離為定值,并求弦AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓
x2
25
+
y2
16
=1的右焦點(diǎn)為F2,點(diǎn)P是橢圓上任意一點(diǎn),圓M是以PF2為直徑的圓.
(Ⅰ)若圓M過原點(diǎn)O,求圓M的方程;
(Ⅱ)寫出一個(gè)定圓的方程,使得無論點(diǎn)P在橢圓的什么位置,該定圓總與圓M相切,請(qǐng)寫出你的探究過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
總計(jì)
愛好 40 20 60
不愛好 20 30 50
總計(jì) 60 50 110
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
附:κ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

試考查大學(xué)生“愛好該項(xiàng)運(yùn)動(dòng)是否與性別有關(guān)”,若有關(guān),請(qǐng)說明有多少把握.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={2,0,3-a2},P={2,a2-a-2},若∁UP={-1},則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|1≤x≤10},B={x|x2-x-6>0},則如圖中陰影表示的集合為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案