設(shè)U=R,P={x|x<1},Q={x|x2≥4},則P∩∁UQ=( 。
A、{x|-1<x<2}
B、{x|-2<x<1}
C、{x|1<x<2}
D、{x|-2<x<2}
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專(zhuān)題:集合
分析:求出集合Q,利用集合的基本運(yùn)算即可得到結(jié)論.
解答: 解:Q={x|x2≥4}={x|x≥2或x≤-2},
則∁UQ={x|-2<x<2},
則P∩∁UQ={x|-2<x<1},
故選:B
點(diǎn)評(píng):本題主要考查集合的基本運(yùn)算,利用條件求出集合Q的元素是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,直線y=x被橢圓C截得的線段長(zhǎng)為
4
10
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn)(A,B不是橢圓C的頂點(diǎn)).點(diǎn)D在橢圓C上,且AD⊥AB,直線BD與x軸、y軸分別交于M,N兩點(diǎn).
(i)設(shè)直線BD,AM的斜率分別為k1,k2,證明存在常數(shù)λ使得k1=λk2,并求出λ的值;
(ii)求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不共線的向量
α
β
,|
α
|=2,|
β
|=1,則向量
β
α
-
β
的夾角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={y丨y=x2},B={x丨
x+1
x-2
<0},求A∩B=(  )
A、[0,+∞)
B、(-1,2)
C、[0,2)
D、(-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積是( 。
A、4πB、3πC、2πD、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x∈N*丨-1≤x≤7},集合M={2,4,6},P={3,4,5},那么集合∁U(M∪P)是( 。
A、{-1,0,1,7}
B、{1,7}
C、{1,3,7}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C:x2=4y,過(guò)點(diǎn)M(0,2)任作一直線與C相交于A,B兩點(diǎn),過(guò)點(diǎn)B作y軸的平行線與直線AO相交于點(diǎn)D(O為坐標(biāo)原點(diǎn)).
(1)證明:動(dòng)點(diǎn)D在定直線上;
(2)作C的任意一條切線l(不含x軸),與直線y=2相交于點(diǎn)N1,與(1)中的定直線相交于點(diǎn)N2,證明:|MN2|2-|MN1|2為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2|x-1|+x-1,g(x)=16x2-8x+1.記f(x)≤1的解集為M,g(x)≤4的解集為N.
(Ⅰ)求M;
(Ⅱ)當(dāng)x∈M∩N時(shí),證明:x2f(x)+x[f(x)]2
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,2
3
sin2
A+B
2
=sinC+
3
+1.
(1)求角C的大小;
(2)若a=2
3
,c=2,求b.

查看答案和解析>>

同步練習(xí)冊(cè)答案