過(guò)點(diǎn)(0,1)且與曲線y=在點(diǎn)(3,2)處的切線垂直的直線的方程為(  )

(A)2x-y+1=0      (B)2x+y-1=0

(C)x+2y-2=0           (D)x-2y+2=0

A.∵y=,

∴y′=

∴曲線在點(diǎn)(3,2)處的切線斜率為k==-

故所求直線的斜率為k′=2,∴直線方程為y-1=2x即2x-y+1=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)精英家教網(wǎng)如圖1,OA,OB是某地一個(gè)湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過(guò)棧橋CD上某點(diǎn)M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個(gè)跨越水面的三角形觀光平臺(tái)MGK.建立如圖2所示的直角坐標(biāo)系,測(cè)得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設(shè)點(diǎn)M的坐標(biāo)為(s,t),記z=s•t.(題中所涉及的長(zhǎng)度單位均為米,棧橋和防波堤都不計(jì)寬度
(1)求z的取值范圍;
(2)試寫(xiě)出三角形觀光平臺(tái)MGK面積S△MGK關(guān)于z的函數(shù)解析式,并求出該面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南師大附中高三(下)第八次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖1,OA,OB是某地一個(gè)湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過(guò)棧橋CD上某點(diǎn)M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個(gè)跨越水面的三角形觀光平臺(tái)MGK.建立如圖2所示的直角坐標(biāo)系,測(cè)得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設(shè)點(diǎn)M的坐標(biāo)為(s,t),記z=s•t.(題中所涉及的長(zhǎng)度單位均為米,棧橋和防波堤都不計(jì)寬度
(1)求z的取值范圍;
(2)試寫(xiě)出三角形觀光平臺(tái)MGK面積S△MGK關(guān)于z的函數(shù)解析式,并求出該面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市浦東新區(qū)高三(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖1,OA,OB是某地一個(gè)湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過(guò)棧橋CD上某點(diǎn)M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個(gè)跨越水面的三角形觀光平臺(tái)MGK.建立如圖2所示的直角坐標(biāo)系,測(cè)得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設(shè)點(diǎn)M的坐標(biāo)為(s,t),記z=s•t.(題中所涉及的長(zhǎng)度單位均為米,棧橋和防波堤都不計(jì)寬度
(1)求z的取值范圍;
(2)試寫(xiě)出三角形觀光平臺(tái)MGK面積S△MGK關(guān)于z的函數(shù)解析式,并求出該面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《三角函數(shù)》2013年高三一輪復(fù)習(xí)單元訓(xùn)練(北京師范大學(xué)附中)(解析版) 題型:解答題

如圖1,OA,OB是某地一個(gè)湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過(guò)棧橋CD上某點(diǎn)M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個(gè)跨越水面的三角形觀光平臺(tái)MGK.建立如圖2所示的直角坐標(biāo)系,測(cè)得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設(shè)點(diǎn)M的坐標(biāo)為(s,t),記z=s•t.(題中所涉及的長(zhǎng)度單位均為米,棧橋和防波堤都不計(jì)寬度
(1)求z的取值范圍;
(2)試寫(xiě)出三角形觀光平臺(tái)MGK面積S△MGK關(guān)于z的函數(shù)解析式,并求出該面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市徐匯區(qū)、金山區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖1,OA,OB是某地一個(gè)湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過(guò)棧橋CD上某點(diǎn)M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個(gè)跨越水面的三角形觀光平臺(tái)MGK.建立如圖2所示的直角坐標(biāo)系,測(cè)得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設(shè)點(diǎn)M的坐標(biāo)為(s,t),記z=s•t.(題中所涉及的長(zhǎng)度單位均為米,棧橋和防波堤都不計(jì)寬度
(1)求z的取值范圍;
(2)試寫(xiě)出三角形觀光平臺(tái)MGK面積S△MGK關(guān)于z的函數(shù)解析式,并求出該面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案