精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的左右焦點分別為、,上頂點為BO為坐標原點,且向量的夾角為

求橢圓的方程;

,點P是橢圓上的動點,求的最大值和最小值;

設不經過點B的直線l與橢圓相交于MN兩點,且直線BMBN的斜率之和為1,證明:直線l過定點.

【答案】(1);(2)最大值6,最小;(3)證明見解析.

【解析】

(1)由向量的夾角為,可得可得,即可得到橢圓方程;(2),代入橢圓方程,結合數量積公式可得,利用二次函數的性質可得結果;(3)設不經過點的直線方程為:,聯(lián)立橢圓方程可得運用韋達定理和直線的斜率公式,化簡可得,代入直線方程即可得證.

橢圓,向量的夾角為,

可得,即,

則橢圓方程為;

,可得,即,

,

可得時,上式取得最小值;時,取得最大值6,

的范圍是;

證明:當直線l的斜率不存在時,設,,

,

,得,此時M,N重合,不符合題意;

設不經過點P的直線l方程為:,,,

,

,

,

,

,

直線l必過定點

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設樣本數據x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某河流在一段時間x min內流過的水量為y m3,yx的函數,yf(x)=.

(1)x1變到8時,y關于x的平均變化率是多少?它代表什么實際意義?

(2)f′(27)并解釋它的實際意義.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列有關命題的說法正確的是(
A.命題“若xy=0,則x=0”的否命題為:“若xy=0,則x≠0”
B.“若x+y=0,則x,y互為相反數”的逆命題為真命題
C.命題“x∈R,使得2x2﹣1<0”的否定是:“x∈R,均有2x2﹣1<0”
D.命題“若cosx=cosy,則x=y”的逆否命題為真命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足 ,則使不等式a2016>2017成立的所有正整數a1的集合為(
A.{a1|a1≥2017,a1∈N+}
B.{a1|a1≥2016,a1∈N+}
C.{a1|a1≥2015,a1∈N+}
D.{a1|a1≥2014,a1∈N+}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過15萬元時,按銷售利潤的進行獎勵;當銷售利潤超過15萬元時,若超過部分為A萬元,則超出部分按進行獎勵,沒超出部分仍按銷售利潤的進行獎勵記獎金總額為單位:萬元,銷售利潤為單位:萬元

1寫出該公司激勵銷售人員的獎勵方案的函數表達式;

2如果業(yè)務員老張獲得萬元的獎金,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的一個焦點與拋物線 的焦點相同,F1 , F2為橢圓的左、右焦點.M為橢圓上任意一點,△MF1F2面積的最大值為4

(1)求橢圓C的方程;
(2)設橢圓C上的任意一點N(x0 , y0),從原點O向圓N:(x﹣x02+(y﹣y02=3作兩條切線,分別交橢圓于A,B兩點.試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對任意的x∈R,都有f(x)≤f(B),求函數f(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的各項均為正整數,其前n項和為Sn , an+1= ,若S3=10,則S180=(
A.600或900
B.900或560
C.900
D.600

查看答案和解析>>

同步練習冊答案