精英家教網 > 高中數學 > 題目詳情

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經過點M(0,1),與橢圓C交于不同兩點A、B.

   (1)求橢圓C的標準方程;

   (2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.

 

【答案】

   解:(1)∵焦距為4,∴ c=2………………………………………………1分

            又∵的離心率為……………………………… 2分

            ∴,∴a=,b=2………………………… 4分

            ∴標準方程為………………………………………6分

      (2)設直線l方程:y=kx+1,A(x1,y1),B(x2,y2),

           由……………………7分

           ∴x1+x2=,x1x2=

             由(1)知右焦點F坐標為(2,0),

             ∵右焦點F在圓內部,∴<0………………………………8分

             ∴(x1 -2)(x2-2)+ y1y2<0

             即x1x2-2(x1+x2)+4+k2 x1x2+k(x1+x2)+1<0…………………… 9分

             ∴<0…………… 11分

             ∴k<……………………………………………………………… 12分

             經檢驗得k<時,直線l與橢圓相交,

             ∴直線l的斜率k的范圍為(-∞,)……………………………13

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(-c,0)和(c,0),若c是a、m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中數學 來源:2014屆廣東省、陽東一中高二上聯(lián)考文數試卷(解析版) 題型:解答題

(本題滿分14分)

如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2,·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數學(天津卷解析版) 題型:解答題

已知橢圓(a>b>0),點在橢圓上。

(I)求橢圓的離心率。

(II)設A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點定位】本小題主要考查橢圓的標準方程和幾何性質、直線的方程、平面內兩點間距離公式等基礎知識. 考查用代數方法研究圓錐曲線的性質,以及數形結合的數學思想方法.考查運算求解能力、綜合分析和解決問題的能力.

 

查看答案和解析>>

科目:高中數學 來源:2010年河北省邯鄲市高二上學期期末考試數學理卷 題型:解答題

(本小題滿分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數的零點.

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點,,求k的值.

 

查看答案和解析>>

同步練習冊答案