【題目】在平面上給定相異兩點A,B,設P點在同一平面上且滿足,當時,P點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓,現(xiàn)有雙曲線),A,B為雙曲線的左、右頂點,C,D為雙曲線的虛軸端點,動點P滿足,面積的最大值為面積的最小值為4,則雙曲線的離心率為______.

【答案】

【解析】

根據(jù)為雙曲線的左、右頂點可設,,,由兩點間距離公式并化簡可得動點的軌跡方程.為雙曲線的左、右頂點可知當位于圓的最高點時的面積最大,根據(jù)面積最大值求得.位于圓的最左端時的面積最小,結合最小面積可求得,即可求得雙曲線的離心率.

,,,

依題意,,

,

兩邊平方化簡得,則圓心為,半徑,

位于圓的最高點時的面積最大,最大面積為,

解得;

位于圓的最左端時的面積最小,最小面積為,

解得,

故雙曲線的離心率為.

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐P-ABC(如圖1)的展開圖如圖2,其中四邊形ABCD為邊長等于的正方形,ABEBCF均為正三角形,在三棱錐P-ABC.

1)證明:平面PAC⊥平面ABC;

2)若M,N分別是AP,BC的中點,請判斷三棱錐M-BCP和三棱錐N-APC體積的大小關系并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:

(Ⅰ)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核優(yōu)秀的概率;

(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優(yōu)秀的概率;

(Ⅲ)記表示學生的考核成績在區(qū)間的概率,根據(jù)以往培訓數(shù)據(jù),規(guī)定當時培訓有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學生冰雪培訓活動是否有效,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,C、D是離心率為的橢圓的左、右頂點,是該橢圓的左、右焦點, A、B是直線4上兩個動點,連接ADBD,它們分別與橢圓交于點E、F兩點,且線段EF恰好過橢圓的左焦點. 當時,點E恰為線段AD的中點.

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:以AB為直徑的圓始終與直線EF相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,,,

(1)若的中點,證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖都是由邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第個幾何體的表面積是__________個平方單位.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】研究機構對某校學生往返校時間的統(tǒng)計資料表明:該校學生居住地到學校的距離(單位:千米)和學生花費在上學路上的時間(單位:分鐘)有如下的統(tǒng)計資料:

到學校的距離(千米)

1.8

2.6

3.1

4.3

5.5

6.1

花費的時間(分鐘)

17.8

19.6

27.5

31.3

36.0

43.2

如果統(tǒng)計資料表明有線性相關關系,試求:

(1)判斷是否有很強的線性相關性?

(相關系數(shù)的絕對值大于0.75時,認為兩個變量有很強的線性相關性,精確到0.01)

(2)求線性回歸方程(精確到0.01);

(3)將分鐘的時間數(shù)據(jù)稱為美麗數(shù)據(jù),現(xiàn)從這6個時間數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)全部為美麗數(shù)據(jù)的概率.

參考數(shù)據(jù):,,

,

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】菜市房管局為了了解該市市民2018年1月至2019年1月期間購買二手房情況,首先隨機抽樣其中200名購房者,并對其購房面積(單位:平方米,)進行了一次調(diào)查統(tǒng)計,制成了如圖1所示的頻率分布南方匿,接著調(diào)查了該市2018年1月﹣2019年1月期間當月在售二手房均價(單位:萬元/平方米),制成了如圖2所示的散點圖(圖中月份代碼1﹣13分別對應2018年1月至2019年1月).

(1)試估計該市市民的平均購房面積

(2)現(xiàn)采用分層抽樣的方法從購房耐積位于的40位市民中隨機取4人,再從這4人中隨機抽取2人,求這2人的購房面積恰好有一人在的概率.

(3)根據(jù)散點圖選擇兩個模型進行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為,并得到一些統(tǒng)計量的值,如表所示:

請利用相關指數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測2019年6月份的二手房購房均價(精確到).

參考數(shù)據(jù):,,,,,,,.參考公式:相關指數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)經(jīng)過點(0,),點F是橢圓的右焦點,點F到左頂點的距離和到右準線的距離相等.過點F的直線交橢圓于M,N兩點.

(1)求橢圓C的標準方程;

(2)當MF=2FN時,求直線的方程;

(3)若直線上存在點P滿足PM·PN=PF2,且點P在橢圓外,證明:點P在定直線上.

查看答案和解析>>

同步練習冊答案