【題目】已知橢圓C1ab0)的一個頂點坐標(biāo)為A0,﹣1),離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線y=kx1)(k0)與橢圓C交于不同的兩點PQ,線段PQ的中點為M,點B10),求證:點M不在以AB為直徑的圓上.

【答案】(Ⅰ);(Ⅱ)證明見解析.

【解析】

(Ⅰ)由已知列出關(guān)于的方程組可解得結(jié)論;

(Ⅱ)設(shè)P(x1y1),Q(x2,y2),M(x0,y0),由直線方程與橢圓方程聯(lián)立消去后整理,應(yīng)用韋達定理得,求出中點坐標(biāo),計算,證明即可,

(Ⅰ)解:由題意可知

解得

所以橢圓C的方程為.

(Ⅱ)證明:設(shè)P(x1,y1),Q(x2,y2),M(x0,y0),.

得(4k2+1)x28k2x+4k24=0,

所以△=(﹣8k2)24×(4k2+1)(4k24)=48k2+16.

所以當(dāng)k為任何實數(shù)時,都有△>0.

所以 ,.

因為線段PQ的中點為M,

所以 ,

因為 B10),

所以 .

所以

.

又因為 k0,,

所以 ,

所以點M不在以AB為直徑的圓上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是數(shù)列1,,,…,的各項和,,.

1)設(shè),證明:內(nèi)有且只有一個零點;

2)當(dāng)時,設(shè)存在一個與上述數(shù)列的首項、項數(shù)、末項都相同的等差數(shù)列,其各項和為,比較的大小,并說明理由;

3)給出由公式推導(dǎo)出公式的一種方法如下:在公式中兩邊求導(dǎo)得:,所以成立,請類比該方法,利用上述數(shù)列的末項的二項展開式證明:(其中表示組合數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為F,過F的直線與拋物線交于AB兩點,點O為坐標(biāo)原點,則下列命題中正確的個數(shù)為(

面積的最小值為4;

②以為直徑的圓與x軸相切;

③記,的斜率分別為,,則;

④過焦點Fy軸的垂線與直線分別交于點MN,則以為直徑的圓恒過定點.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點個數(shù);

2)若有兩個極值點,試判斷的大小關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義域為的奇函數(shù),且它的最小正周期是T,已知,.給出下列四個判斷:①對于給定的正整數(shù),存在,使得成立;②當(dāng)a時,對于給定的正整數(shù),存在,使得成立;③當(dāng)時,函數(shù)既有對稱軸又有對稱中心;④當(dāng)時,的值只有0.其中正確判斷的有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題的展開式中,僅有第7項的二項式系數(shù)最大,則展開式中的常數(shù)項為495;命題隨機變量服從正態(tài)分布,且,則.現(xiàn)給出四個命題:,,,,其中真命題的是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxsinx+axa0).

1)若a1,求證:當(dāng)x1,)時,fx)<2x1;

2)若fx)在(02π)上有且僅有1個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以塔底座的邊作方形.作方圓圖,會發(fā)現(xiàn)方圓的切點正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中中,曲線C的參數(shù)方程為參數(shù),.以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

1)設(shè)P是曲線C上的一個動點,當(dāng)時,求點P到直線的距離的最大值;

2)若曲線C上所有的點均在直線的右下方,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案