如右圖,以半圓的一條弦AN為對稱軸將折疊過來和直徑MN交于點B,如
果MB:BN=2:3,且MN=10,則弦AN的長為(   )

A.B.C.D.

B

解析試題分析:
如圖:作關于直線的對稱線段,交半圓于,連接,
可得三點共線,,,,
,即
,所以,故.
考點:翻折變換(折疊問題);勾股定理.
點評:此題將翻折變換、勾股定理、割線定理相結合,考查了學生的綜合應用能力,要善于
觀察圖形特點,然后做出解答.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

已知平面α∥平面β,P是α、β外一點,過點P的直線m分別與α、β交于A、C,過點P的直線n分別與α、β交于B、D,且PA=6,AC=9,PD=8.則BD的長為(  )
A.                B.                C.             D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

半徑為10cm,面積為100cm2的扇形中,弧所對的圓心角為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

平面與球O相交于周長為的⊙,A、B為⊙上兩點,若∠AOB=,且A、B的球面距離為,則的長度為(    )
A.1            B.         C.       D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,△ABC內接于O,過BC中點D作平行于AC的直線l,l交AB于E,交O于G、F,交O在A點的切線于P,若PE=3,ED=2,EF=3,則PA的長為    。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖所示,在Rt△ABC中,∠C=90°,AC=4,BC=3,以BC上一點O為圓心作⊙O與AB相切于E,與AC相切于C,又⊙O與BC的另一個交點為D,則線段BD的長為

A.1 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

中,是斜邊上的高,該圖中只有個三角形與△相似,則的值為(     )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

矩形中,,的中點,邊上一動點.
取得最大時,等于

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

中,分別為上的點,且,的面積是,梯形的面積為,則的值為(    )

A.B.C.D.

查看答案和解析>>

同步練習冊答案