設(shè)f(x)=a3x+1-a-2x,(a>0,a≠1).
(Ⅰ)解關(guān)于a的不等式f(-1)>0;
(Ⅱ)當(dāng)a>1時(shí),求使f(x)>0的x的取值范圍.
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì),其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:(Ⅰ)由不等式f(-1)>0,得 a-2-a2>0,結(jié)合a>0,且a≠1,求得a的取值范圍;
(Ⅱ)a>1時(shí),由f(x)>0,得 a3x+1>a-2x,化為3x+1>-2x,求出x的取值范圍.
解答: 解:(Ⅰ)∵f(x)=a3x+1-a-2x
∴不等式f(-1)>0,即 a-2-a2>0,
∴a-2>a2,即 a4<1;
又∵a>0,且a≠1,∴0<a<1;
即不等式的解集是{a|0<a<1};
(Ⅱ)當(dāng)a>1時(shí),由f(x)>0,得a3x+1>a-2x,
∴3x+1>-2x,解得 x>-
1
5
;
∴滿足條件的x的取值范圍是(-
1
5
,+∞).
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)的單調(diào)性應(yīng)用問(wèn)題,解題時(shí)應(yīng)用指數(shù)函數(shù)的單調(diào)性解不等式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角形面積為S=
1
2
(a+b+c)r,a,b,c為三角形三邊長(zhǎng),r為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為(  )
A、V=
1
3
abc
B、V=
1
3
Sh
C、V=
1
3
(ab+bc+ac)•h(h為四面體的高)
D、V=
1
3
(S1+S2+S3+S4)•r(其中S1,S2,S3,S4分別為四面體四個(gè)面面積,r為四面體內(nèi)切球的半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的通項(xiàng)公式是an=n2-7n+6.
(1)這個(gè)數(shù)列的第4項(xiàng)是多少?
(2)150是不是這個(gè)數(shù)列的項(xiàng)?若是這個(gè)數(shù)列的項(xiàng),它是第幾項(xiàng)?
(3)該數(shù)列從第幾項(xiàng)開(kāi)始各項(xiàng)都是正數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

比較
5
-
7
11
-
13
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,若a2=9,a5=3,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;       
(Ⅱ)求Sn達(dá)到最大值及此時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<-2或x>3},B={x|4x+m<0}.當(dāng)A?B時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a2=
1
3
,an=
1
3
(1-an-1),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某電視臺(tái)“挑戰(zhàn)60秒”活動(dòng)規(guī)定上臺(tái)演唱:
(Ⅰ)連續(xù)達(dá)到60秒可轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)(轉(zhuǎn)盤(pán)為八等分圓盤(pán))一次進(jìn)行抽獎(jiǎng),達(dá)到90秒可轉(zhuǎn)兩次,達(dá)到120秒可轉(zhuǎn)三次(獎(jiǎng)金累加).
(Ⅱ)轉(zhuǎn)盤(pán)指針落在Ⅰ、Ⅱ、Ⅲ區(qū)依次為一等獎(jiǎng)(500元)、二等獎(jiǎng)(200元)、三等獎(jiǎng)(100元),落在其它區(qū)域不獎(jiǎng)勵(lì).
(Ⅲ)演唱時(shí)間從開(kāi)始到三位評(píng)委中至少1人嗚啰為止,現(xiàn)有一演唱者演唱時(shí)間為100秒.
(1)求此人中一等獎(jiǎng)的概率;
(2)設(shè)此人所得獎(jiǎng)金為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,
AB
=(1,1),
AC
=(2,k),k是區(qū)間[-3,1]上任取的一個(gè)整數(shù),求△ABC為直角三角形的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案