【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下:

超過(guò)1小時(shí)

不超過(guò)1小時(shí)

20

8

12

m

1)求m,n;

2)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過(guò)1小時(shí)與性別有關(guān)?

3)從該校學(xué)生中隨機(jī)調(diào)查60名學(xué)生,一周參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的人數(shù)記為X,以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的頻率作為該事件發(fā)生的概率,求X的分布列和數(shù)學(xué)期望.

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2.

【答案】1n48m82)沒(méi)有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過(guò)1小時(shí)與性別有關(guān)(3)詳見(jiàn)解析

【解析】

1)根據(jù)分層抽樣方法,計(jì)算比例,即可求解;

2)補(bǔ)全列聯(lián)表,按照公式計(jì)算,根據(jù)獨(dú)立性檢驗(yàn),可得結(jié)論;

3)根據(jù)題意,以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的頻率作為該事件發(fā)生的概率,計(jì)算概率為,符合二項(xiàng)分布,求出分布列,計(jì)算期望.

1)根據(jù)分層抽樣法,抽樣比例為

n48;

m48208128;

2)根據(jù)題意完善2×2列聯(lián)表,如下;

超過(guò)1小時(shí)

不超過(guò)1小時(shí)

合計(jì)

男生

20

8

28

女生

12

8

20

合計(jì)

32

16

48

計(jì)算

所以沒(méi)有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過(guò)1小時(shí)與性別有關(guān);

3)參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的頻率為

用頻率估計(jì)概率,從該校學(xué)生中隨機(jī)調(diào)査60名學(xué)生,則XB60,),

所以,k0,1,23,60;

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)任意xR,存在函數(shù)fx)滿(mǎn)足(

A.fcosx)=sin2xB.fsin2x)=sinx

C.fsinx)=sin2xD.fsinx)=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為ab,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸為正半軸為極軸建立極坐標(biāo)系.已知曲線(xiàn)的極坐標(biāo)方程為 ,直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),直線(xiàn)過(guò)定點(diǎn)且傾斜角為交曲線(xiàn)兩點(diǎn).

(1)把曲線(xiàn)化成直角坐標(biāo)方程,并求的值;

(2)若成等比數(shù)列,求直線(xiàn)的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角AB,C的對(duì)邊分別為ab,c.已知asinA+B)=csin.

1)求A;

2)求sinBsinC的取值范圍;

3)若△ABC的面積為,周長(zhǎng)為8,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知斜率為的直線(xiàn)與橢圓交于,兩點(diǎn),線(xiàn)段的中點(diǎn)為

(1)證明:;

(2)設(shè)的右焦點(diǎn),上一點(diǎn),.證明:,,成等差數(shù)列,并求該數(shù)列的公差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多面體ABCDEF中,四邊形ABFE為正方形,,GAB的中點(diǎn),.

1)求證:平面CDEF;

2)求平面ACD與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)橢圓 )的上頂點(diǎn)為, 上的一點(diǎn),以為直徑的圓經(jīng)過(guò)橢圓的右焦點(diǎn)

1)求橢圓的方程;

2)動(dòng)直線(xiàn)與橢圓有且只有一個(gè)公共點(diǎn),問(wèn):在軸上是否存在兩個(gè)定點(diǎn),它們到直線(xiàn)的距離之積等于?如果存在,求出這兩個(gè)定點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線(xiàn)性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線(xiàn)性相關(guān)關(guān)系

B. 回歸直線(xiàn)過(guò)樣本點(diǎn)的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

同步練習(xí)冊(cè)答案