將n2個(gè)正整數(shù)1,2,3,…,n2(n≥3)填入n×n的方格內(nèi),若每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫n階幻方,設(shè)f(n)為n階幻方對(duì)角線上的數(shù)的和,如下表就是一個(gè)3階幻方,且f(3)=15,則f(n)等于

8

1

6

3

5

7

4

9

2

A.            B.           C.           D.

答案:B

解析:各選項(xiàng)中滿足f(3)=15的只有B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將n2個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使其每行、每列、每條對(duì)角線上的數(shù)的和都相等,這個(gè)正方形叫做n階幻方.記f(n)為n階幻方對(duì)角線上數(shù)的和,如右圖就是一個(gè)3階幻方,可知f(3)=15.已知將等差數(shù)列:3,4,5,…前16項(xiàng)填入4×4方格中,可得到一個(gè)4階幻方,則其對(duì)角線上數(shù)的和f(4)等于(  )
8 3 4
1 5 9
6 7 2
A、36B、42C、34D、44

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•肇慶二模)將n2個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方.記f(n)為n階幻方對(duì)角線的和,如右表就是一個(gè)3階幻方,可知f(3)=15,則f(4)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)將n2個(gè)正整數(shù)1,2,3,…n2填入n×n個(gè)方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方,如圖就是一個(gè)3 階幻方,定義f(n)為n階幻方對(duì)角線上數(shù)的和,例如f(3)=15,則f(4)=
 

8 1 6
3 5 7
4 9 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將n2個(gè)正整數(shù)1,2,3,…,n2填入到n×n個(gè)方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方.下圖就是一個(gè)3階幻方.定義f(n)為n階幻方對(duì)角線上數(shù)的和.例如f(3)=15,那么f(4)是(    )

8

1

6

3

5

7

4

9

2

A.32          B.33           C.34           D.35

查看答案和解析>>

同步練習(xí)冊(cè)答案