已知圓O的方程為,圓M的方程為,過圓M上任意一點P作圓O的切線PA,若直線PA與圓M的另一個交點為Q,則當(dāng)PQ的長度最大時,直線PA的斜率是___________.

 

【答案】

1或-7

【解析】

試題分析:根據(jù)題意可以分析圓O的圓心到PA的距離為,那么可知要使得在直角三角形QPA中,PQ最大,則只要OQ最大即可,那么即圓O的圓心到圓M上點的距離的最大值問題來處理,由于點|OM|為定值,且為,那么可知連接OM,則PA的長度結(jié)合勾股定理可知。那么設(shè)直線PA的斜率為k,那么PQ的中點與點M的連線的斜率為 ,那么聯(lián)立方程組可知其斜率為1或-7。

考點:本試題考查了圓內(nèi)弦的長度問題。

點評:要分析圓內(nèi)弦的最值問題,可以結(jié)合圓的半徑和弦心距,以及半弦長的關(guān)系來分析,這是解決該試題的關(guān)鍵,同時要利用兩圓的位置關(guān)系,要使得PQ最大,只要點M到PA的距離最小即可。轉(zhuǎn)化為點到直線的距離的最小值來進(jìn)行,進(jìn)而求得斜率值,屬于中檔題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的方程為x2+y2=16.
(1)求過點M(-4,8)的圓O的切線方程;
(2)過點N(3,0)作直線與圓O交于A、B兩點,求△OAB的最大面積以及此時直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的方程為x2+y2=2,圓M的方程為(x-1)2+(y-3)2=1,過圓M上任一點P作圓O的切線PA,若直線PA與圓M的另一個交點為Q,則當(dāng)弦PQ的長度最大時,直線PA的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、已知圓O的方程為x2+y2=4,P是圓O上的一個動點,若OP的垂直平分線總是被平面區(qū)域|x|+|y|≥a覆蓋,則實數(shù)a的取值范圍是
(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的方程為x2+y2=4,P是圓O上的一個動點,若線段OP的垂直平分線總是被平面區(qū)域|x|+|y|≥a覆蓋,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊答案