已知函數(shù)f(x)=x3+x-16.
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);
(3)如果曲線y=f(x)的某一切線與直線y=-x+3垂直,求切點(diǎn)坐標(biāo)與切線的方程.

(1)y=13x-32
(2)直線l的方程為y=13x,切點(diǎn)坐標(biāo)為(-2,-26)
(3)切線坐標(biāo):(1,-14)(-1,-18)    切線方程:y=4x-18或y=4x-14

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求的單調(diào)增區(qū)間;
(2)時(shí),函數(shù)有三個(gè)互不相同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若,求證:函數(shù)在(1,+∞)上是增函數(shù);
(2)當(dāng)時(shí),求函數(shù)在[1,e]上的最小值及相應(yīng)的x值;
(3)若存在[l,e],使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax+x2-xln a(a>0,a≠1).
(1)求函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)
(1)時(shí),求最小值;
(2)若是單調(diào)減函數(shù),求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+a2(a,b∈R).
(1)若函數(shù)f(x)在x=1處有極值10,求b的值;
(2)若對(duì)于任意的a∈[-4,+∞),f(x)在x∈[0,2]上單調(diào)遞增,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)已知函數(shù)的圖象在點(diǎn)處的切線垂直于軸.
(1)求實(shí)數(shù)的值;
(2)求的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2-1與函數(shù)g(x)=aln x(a≠0).
(1)若f(x),g(x)的圖像在點(diǎn)(1,0)處有公共的切線,求實(shí)數(shù)a的值;
(2)設(shè)F(x)=f(x)-2g(x),求函數(shù)F(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)若,當(dāng)時(shí),在區(qū)間內(nèi)存在極值,求整數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案