已知y=f(x)為R上可導(dǎo)函數(shù),當(dāng)x≠0時(shí),f′(x)+
f(x)x
>0
則關(guān)于x的函數(shù)g(x)=xf(x)+1的零點(diǎn)個(gè)數(shù)為(  )
分析:由g(x)=xf(x)+1=0得xf(x)=-1,然后利用導(dǎo)數(shù)研究函數(shù)xf(x)的單調(diào)性和極值,即可得到結(jié)論.
解答:解:由g(x)=xf(x)+1=0得xf(x)=-1,
設(shè)g(x)=xf(x),則g'(x)=f(x)+xf'(x).
∵當(dāng)x≠0時(shí),f′(x)+
f(x)
x
>0

∴當(dāng)x≠0時(shí),
xf′(x)+f(x)
x
>0

即當(dāng)x>0時(shí),xf'(x)+f(x)>0,即g'(x)>0,此時(shí)函數(shù)g(x)單調(diào)遞增,
當(dāng)x<0時(shí),xf'(x)+f(x)<0,即g'(x)<0,此時(shí)函數(shù)g(x)單調(diào)遞減,
∴當(dāng)x=0時(shí),函數(shù)g(x)取得 極小值,同時(shí)也是最小值g(0)=0,
∴g(x)≥0,
∴g(x)=-1無(wú)解,
即函數(shù)g(x)=xf(x)+1的零點(diǎn)個(gè)數(shù)為0個(gè).
故選C.
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷,利用條件構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值是解決本題的關(guān)鍵,綜合性較強(qiáng),涉及的知識(shí)點(diǎn)較多.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)為R上的可導(dǎo)函數(shù),當(dāng)x≠0時(shí),f′(x)+
f(x)
x
>0
,則關(guān)于x的函數(shù)g(x)=f(x)+
1
x
的零點(diǎn)個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)為R上的連續(xù)可導(dǎo)的函數(shù),當(dāng)x≠0時(shí),f(x)+
f(x)
x
>0
,則關(guān)于x的方程f(x)+
1
x
=0
的根的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)為R奇函數(shù),當(dāng)x≥0時(shí)f(x)=
3x+1
,則當(dāng)x<0時(shí),則f(x)=
-
3-x+1
-
3-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)為R上的可導(dǎo)函數(shù),當(dāng)x≠0時(shí),f′(x)+
f(x)
x
>0
,則關(guān)于x的函數(shù)g(x)=f(x)+
1
x
的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案