已知命題p:方程a2x2+ax-2=0在[-1,1]上有解;
命題q:只有一個實數(shù)x滿足不等式x2+2ax+2a≤0;
若命題“p或q”是真命題,而命題“p且q”是假命題,且¬q是真命題,求a的取值范圍.
【答案】分析:如果“p或q”為真命題,“p或q”也為真命題,則“p”、“q”中一個為真命題、一個為假命題.然后再分類討論即可求解.
解答:解:對于命題p:由a2x2+ax-2=0在上有解,
當a=0時,不符合題意;
當a≠0時,方程可化為:(ax+2)(ax-1)=0,
解得:x=-,或x=
∵x∈[-1,1],
∴-1≤-≤1或-1≤≤1,
解得:a≥1或a≤-1
對于命題q:由只有一個實數(shù)x滿足不等式x2+2ax+2a≤0
得拋物線y=x2+2ax+2a與x軸只有一個交點,
∴△=4a2-8a=0
∴a=0或a=2
又因命題“p或q”是真命題,而命題“p且q”是假命題,且¬q是真命題,
則命題p是真命題,命題q是假命題,
所以a的取值范圍為(-∞,-1]∪[1,2)∪(2,+∞)
點評:(1)由簡單命題和邏輯連接詞構成的復合命題的真假可以用真值表來判斷,反之根據(jù)復合命題的真假也可以判斷簡單命題的真假.假若p且q真,則p 真,q也真;若p或q真,則p,q至少有一個真;若p且q假,則p,q至少有一個假.(2)可把“p或q”為真命題轉化為并集的運算;把“p且q”為真命題轉化為交集的運算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題P:方程x2+(a2-1)x+a-2=0的兩根為x1和x2,且x1<1<x2<2;命題q:方程|x|+|x-
12
|>a
恒成立;若P或q為真,P且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知命題P:方程x2+(a2-1)x+a-2=0的兩根為x1和x2,且x1<1<x2<2;命題q:方程數(shù)學公式恒成立;若P或q為真,P且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知命題P:方程x2+(a2-1)x+a-2=0的兩根為x1和x2,且x1<1<x2<2;命題q:方程|x|+|x-
1
2
|>a
恒成立;若P或q為真,P且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:方程2x2+ax-a2=0在[-1,1]上有解;命題q:只有一個實數(shù)x滿足不等式x2+2ax+2a≤0,若命題“p∨q”是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶市南開中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

已知命題P:方程x2+(a2-1)x+a-2=0的兩根為x1和x2,且x1<1<x2<2;命題q:方程恒成立;若P或q為真,P且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案