函數(shù)f(x)=
x2-2x-8
的定義域?yàn)锳,函數(shù)g(x)=lg(-x2+2ax+1-a2)的定義域?yàn)锽,且A∩B≠∅,求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)的定義域及其求法,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:分別求解一元二次不等式化簡(jiǎn)集合A與B,然后由A∩B≠∅,結(jié)合集合端點(diǎn)值間的關(guān)系列不等式求解實(shí)數(shù)a的取值范圍.
解答: 解:由x2-2x-8≥0,解得:x≤-2或x≥4.
∴A={x|x≤-2或x≥4}.
由-x2+2ax+1-a2>0,得x2-2ax-1+a2<0,
即(x+a+1)(x+a-1)<0,解得:a-1<x<a+1.
∴B={x|a-1<x<a+1}.
又A∩B≠∅,
∴a-1<-2或a+1>4,解得:a<-1或a>3.
∴實(shí)數(shù)a的取值范圍是a<-1或a>3.
點(diǎn)評(píng):本題考查函數(shù)的定義域及其求法,考查了一元二次不等式的解法,訓(xùn)練了利用集合間的關(guān)系求參數(shù)的取值范圍,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1是某高三學(xué)生14次數(shù)學(xué)考試成績(jī)的莖葉圖,現(xiàn)將該14個(gè)數(shù)據(jù)依次記為A1,A2,…A14,并輸入如圖2所示的一個(gè)算法流程圖,那么該算法流程圖運(yùn)行結(jié)束時(shí)輸出的n值是(  )
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(1+
1
x
)=
1+x2
x2
+
1
x
,試求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
x2+1
為R上的奇函數(shù),且f(1)=
1
2

(1)求a,b的值;
(2)若f(x)在[m,n]上遞增,求n-m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y)為☉C:(x+2)2+y2=1上任一點(diǎn).
(1)求x-2y的最值;
(2)求
y
x-1
的最大值;
(3)求x2+y2-2x-4y+5的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):cos
x
2
cos
x
4
cos
x
8
…cos
x
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)cos2
7
8
π
-
1
2
=;
(2)
tan150°
1-tan2330°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn).
(1)設(shè)橢圓C上點(diǎn)(
3
,
3
2
)到兩點(diǎn)F1、F2距離和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程;
(3)設(shè)點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPM,kPN,試探究kPM•KPN的值是否與點(diǎn)P及直線L有關(guān),不必證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)某電子元件進(jìn)行壽命追蹤調(diào)查,所得樣本數(shù)據(jù)的頻率分布直方圖如圖.
(1)求y0,并根據(jù)圖中的數(shù)據(jù),用分層抽樣的方法抽取20個(gè)元件,元件壽命落在100~300之間的應(yīng)抽取幾個(gè)?
(2)從(1)中抽出的壽命落在100~300之間的元件中任取2個(gè)元件,求事件“恰好有一個(gè)元件壽命落在100~200之間,一個(gè)元件壽命落在200~300之間”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案