已知圓O:x2+y2-4=0,圓C:x2+y2+2x-15=0,若圓O的切線l交圓C于A,B兩點,則△OAB面積的取值范圍是( 。
A、[2
7
,2
15
]
B、[2
7
,8]
C、[2
3
,2
15
]
D、[2
3
,8]
分析:△OAB面積的大小與線段AB的大小有關,要求△OAB面積的取值范圍,只需求出AB的范圍,即可求解.
解答:精英家教網解:圓O的切線l交圓C于A,B兩點,則△OAB面積,S=
1
2
AB•r
,
圓O:x2+y2-4=0,的半徑為r=2,AB是圓C:x2+y2+2x-15=0的弦長,
圓C:x2+y2+2x-15=0的圓心(-1,0),半徑為:4,
圓心到AB的距離最小時,AB最大,圓心到AB的距離最大時,AB最小,如圖:
AB的最小值為:2
42-32
=2
7
;
AB的最大值為:2
42-12
=2
15

∴△OAB面積的最小值為:
1
2
×2×2
7
=2
7

∴△OAB面積的最大值為:
1
2
×2×2
15
=2
15

△OAB面積的取值范圍是:[2
7
,2
15
]

故選:A.
點評:本題考查兩個圓的位置關系,直線與圓的位置關系,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為
2
2
的橢圓,其左焦點為F.若P是圓O上一點,連接PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個公共點A(0,1),F(xiàn)為橢圓的左焦點,直線AF被圓所截得的弦長為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個交點為C、D,B( x0,y0)是橢圓上異于點A的一個動點,在線段CD上是否存在點T(t,0),使|BT|=|AT|,若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=9,定點 A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動點,求線段PA的中點M的軌跡方程
(2)設E、F分別是圓O和直線l上任意一點,求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點P(a,b)(ab≠0)是圓O內一點,過點P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=1,點P在直線x=
3
上,O為坐標原點,若圓O上存在點Q,使∠OPQ=30°,則點P的縱坐標y0的取值范圍是(  )

查看答案和解析>>

同步練習冊答案