在三棱錐SABC中,SA⊥平面ABC,SA=AB=AC=BC,點D是BC邊的中點,點E是線段AD上一點,且AE=3DE,點M是線段SD上一點,
(1)求證:BC⊥AM;
(2)若AM⊥平面SBC,求證:EM∥平面ABS.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第6課時練習卷(解析版) 題型:解答題
三棱柱ABC-A1B1C1在如圖所示的空間直角坐標系中,已知AB=2,AC=4,A1A=3.D是BC的中點.
(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第4課時練習卷(解析版) 題型:解答題
如圖,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求證:
(1)BF∥平面ACE;
(2)BF⊥BD.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第3課時練習卷(解析版) 題型:解答題
如圖,在四棱錐PABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD.若E、F分別為PC、BD的中點,求證:
(1)EF∥平面PAD;
(2)EF⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第3課時練習卷(解析版) 題型:填空題
如圖所示,b,c在平面α內(nèi),a∩c=B,b∩c=A,且a⊥b,a⊥c,b⊥c,若C∈a,D∈b,E在線段AB上(C、D、E均異于A、B),則△ACD的形狀是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第3課時練習卷(解析版) 題型:填空題
如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓O上不同于A、B的任一點,則圖中直角三角形的個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第2課時練習卷(解析版) 題型:填空題
若m,n為兩條不重合的直線,α,β為兩個不重合的平面,則下列命題是真命題的是________.(填序號)
①若m、n都平行于平面α,則m、n一定不是相交直線;
②若m、n都垂直于平面α,則m、n一定是平行直線;
③已知α、β互相平行,m、n互相平行,若m∥α,則n∥β;
④若m、n在平面α內(nèi)的射影互相平行,則m、n互相平行.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第1課時練習卷(解析版) 題型:填空題
若空間中有兩條直線,則“這兩條直線為異面直線”是“這兩條直線沒有公共點”的__________條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”)
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第5課時練習卷(解析版) 題型:解答題
已知等差數(shù)列{an}滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項.
(1)分別求數(shù)列{an}、{bn}的通項公式;
(2)設Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com