A. | tanB•tanA=2B | B. | tanA=2tanB | C. | tanB=2tanA | D. | tanA+tanB=2 |
分析 由題意和正弦定理可得3sinBcosA-3sinAcosB=sinC=sin(A+B),由三角函數(shù)的和差角公式及弦化切的思想可得結(jié)論.
解答 解:∵△ABC的三個角A,B,C所對的邊分別是a,b,c,且3bcosA-3acosB=c,
由正弦定理可得3sinBcosA-3sinAcosB=sinC,
∴3sinBcosA-3sinAcosB=sin(A+B),
∴3sinBcosA-3sinAcosB=sinBcosA+sinAcosB,
即2sinBcosA=4sinAcosB,
兩邊同除以cosAcosB,
得2tanB=4tanA,
即tanB=2tanA.
故選:C.
點評 本題考查了正弦定理以及三角函數(shù)公式和弦化切的思想應(yīng)用問題,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 2 | 4 | 5 | 6 | 8 |
y | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 120° | C. | 135° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{5}$ | B. | $\frac{{\sqrt{6}}}{4}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{20}-\frac{y^2}{5}=1$ | B. | $\frac{x^2}{20}-\frac{y^2}{100}=1$ | C. | $\frac{x^2}{5}-\frac{y^2}{20}=1$ | D. | $\frac{x^2}{25}-\frac{y^2}{100}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
患慢性氣管炎 | 未患慢性氣管炎 | 合計 | |
吸煙 | 20 | 20 | 40 |
不吸煙 | 5 | 55 | 60 |
合計 | 25 | 75 | 100 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com