10.記所有非零向量構(gòu)成的集合為V,對(duì)于$\overrightarrow{a}$,$\overrightarrow$∈V,$\overrightarrow{a}$≠$\overrightarrow$,定義V($\overrightarrow{a}$,$\overrightarrow$)=|x∈V|x•$\overrightarrow{a}$=x•$\overrightarrow$|
(1)請(qǐng)你任意寫出兩個(gè)平面向量$\overrightarrow{a}$,$\overrightarrow$,并寫出集合V($\overrightarrow{a}$,$\overrightarrow$)中的三個(gè)元素;
(2)請(qǐng)根據(jù)你在(1)中寫出的三個(gè)元素,猜想集合V($\overrightarrow{a}$,$\overrightarrow$)中元素的關(guān)系,并試著給出證明;
(3)若V($\overrightarrow{a}$,$\overrightarrow$)=V($\overrightarrow{a}$,$\overrightarrow{c}$),其中$\overrightarrow$≠$\overrightarrow{c}$,求證:一定存在實(shí)數(shù)λ1,λ2,且λ12=1,使得$\overrightarrow{a}$=λ1$\overrightarrow$+λ2$\overrightarrow{c}$.

分析 (1)比如$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,4),設(shè)$\overrightarrow{x}$=(x,y),運(yùn)用數(shù)量積的坐標(biāo)表示,即可得到所求元素;
(2)由(1)可得這些向量共線.理由:設(shè)$\overrightarrow{x}$=(s,t),$\overrightarrow{a}$=(a,b),$\overrightarrow$=(c,d),運(yùn)用數(shù)量積的坐標(biāo)表示,以及共線定理即可得到;
(3)設(shè)$\overrightarrow{x}$=(s,t),$\overrightarrow{a}$=(a,b),$\overrightarrow$=(c,d),$\overrightarrow{y}$=(u,v),$\overrightarrow{c}$=(e,f),運(yùn)用新定義和數(shù)量積的坐標(biāo)表示,解方程可得a,即可得證.

解答 解:(1)比如$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,4),設(shè)$\overrightarrow{x}$=(x,y),
由$\overrightarrow{x}$•$\overrightarrow{a}$=$\overrightarrow{x}$•$\overrightarrow$,可得x+2y=3x+4y,
即為x+y=0,
則集合V($\overrightarrow{a}$,$\overrightarrow$)中的三個(gè)元素為(1,-1),(2,-2),(3,-3);
(2)由(1)可得這些向量共線.
理由:設(shè)$\overrightarrow{x}$=(s,t),$\overrightarrow{a}$=(a,b),$\overrightarrow$=(c,d),
由$\overrightarrow{x}$•$\overrightarrow{a}$=$\overrightarrow{x}$•$\overrightarrow$,可得as+bt=cs+dt,
即有s=$\frac{d-b}{a-c}$t,
即$\overrightarrow{x}$=($\frac{d-b}{a-c}$t,t),
故集合V($\overrightarrow{a}$,$\overrightarrow$)中元素的關(guān)系為共線;
(3)證明:設(shè)$\overrightarrow{x}$=(s,t),$\overrightarrow{a}$=(a,b),$\overrightarrow$=(c,d),
$\overrightarrow{y}$=(u,v),$\overrightarrow{c}$=(e,f),
若V($\overrightarrow{a}$,$\overrightarrow$)=V($\overrightarrow{a}$,$\overrightarrow{c}$),
即有as+bt=cs+dt,au+bv=ue+fv,
解得a=$\frac{sv}{sv-ut}$•c+$\frac{-ut}{sv-ut}$•e+$\frac{(d-f)vt}{sv-ut}$,
可令d=f,可得λ1=$\frac{sv}{sv-ut}$,
λ2=$\frac{-ut}{sv-ut}$,
則一定存在實(shí)數(shù)λ1,λ2,且λ12=1,使得$\overrightarrow{a}$=λ1$\overrightarrow$+λ2$\overrightarrow{c}$.

點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,以及平面向量的數(shù)量積的坐標(biāo)表示,考查化簡(jiǎn)整理運(yùn)算和推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某學(xué)校有老師100人,男學(xué)生600人,女學(xué)生500人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個(gè)容量為n的樣本,已知女學(xué)生一共抽取了40人,則n的值是( 。
A.96B.192C.95D.190

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知y=2${\;}^{co{s}^{2}\frac{1}{x}}$,則y′=2${\;}^{co{s}^{2}\frac{1}{x}}$ln2sin$\frac{2}{x}$•$\frac{1}{{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.拋物線y2=2x的準(zhǔn)線方程為(  )
A.x=1B.x=$\frac{1}{2}$C.x=-1D.x=-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.過(guò)點(diǎn)P(-2,3)且在兩坐標(biāo)軸上的截距相等的直線l的方程為x+y-1=0或3x+2y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.M是拋物線C:y2=2px(p>0)上一點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),O為坐標(biāo)原點(diǎn),若|MF|=p,K是拋物線C準(zhǔn)線與x軸的交點(diǎn),則∠MKO=(  )
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.《孫子算經(jīng)》是我國(guó)古代內(nèi)容極其豐富的數(shù)學(xué)名著,書中有如下問(wèn)題:“今有圓窖周五丈四尺,深一丈八尺,問(wèn)受粟幾何?”其意思為:“有圓柱形容器,底面圓周長(zhǎng)五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈=10尺,1斛=1.62立方尺,圓周率π=3),則該圓柱形容器能放米2700斛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,若輸入n=2017,輸出S的值為0,則f(x)的解析式可以是( 。
A.$f(x)=sin(\frac{π}{3}x)$B.$f(x)=sin(\frac{π}{2}x)$C.$f(x)=cos(\frac{π}{3}x)$D.$f(x)=cos(\frac{π}{2}x)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$|$\overline$|,且($\overrightarrow{a}$-$\overrightarrow$)⊥(2$\overrightarrow{a}$+3$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$夾角的大小為$\frac{3}{4}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案