精英家教網(wǎng)已知函數(shù)y=Asin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分圖象如圖,則該函數(shù)的解析式為
 
分析:由圖形可以求出A,T,根據(jù)周期解出ω,根據(jù)圖象過(-1,0),把這個點的坐標(biāo)代入以及φ的范圍求出φ,可得函數(shù)解析式.
解答:解:由圖象知 A=1,T=8,
∵T=
ω
=8,
ω=
π
4

y=sin(
π
4
x+φ)

又圖象經(jīng)過點(-1,0),
2sin(-
π
4
+φ)=0

∵0≤φ<2π
φ=
π
4

y=sin(
π
4
x+
π
4
)

故答案為:y=sin(
π
4
x+
π
4
)
點評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查分析問題解決問題的能力,解題的關(guān)鍵是初相的求法要注意,本題是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ),在同一周期內(nèi),當(dāng)x=
π
12
時,取最大值y=2,當(dāng)x=
12
時,取得最小值y=-2,那么函數(shù)的解析式為(  )
A、y=
1
2
sin(x+
π
3
B、y=2sin(2x+
π
3
C、y=2sin(
x
2
-
π
6
D、y=2sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)y=Asin(ωx+∅)(A>0,ω>0,-π≤∅≤π)一個周期的圖象(如圖),則這個函數(shù)的一個解析式為( 。
A、y=2sin(
3
2
x+
π
2
)
B、y=2sin(3x+
π
6
)
C、y=2sin(3x-
π
6
)
D、y=2sin(3x-
π
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+?)+B(A>0,ω>0,|?|<
π
2
)
的周期為T,在一個周期內(nèi)的圖象如圖所示,則φ=
-
π
6
-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的一部分圖象如圖所示,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+∅)+k的最大值為4,最小值為0,最小正周期是
π
2
,在x∈[
π
24
,
π
12
]
上單調(diào)遞增,則下列符合條件的解析式是( 。

查看答案和解析>>

同步練習(xí)冊答案