設(shè)數(shù)列的前項和為,且方程 有一根為

(I)求

(II)求的通項公式

解:(Ⅰ)當(dāng)n=1時,

         有一根為于是

解得                   

當(dāng)n=2時,

有一根為于是

解得                 

(Ⅱ)由題設(shè)

即                          

當(dāng)時,,代入上式得

                      ①

由(Ⅰ)知

         

由①可得

由此猜想      

下面用數(shù)學(xué)歸納法證明這個結(jié)論。

(i)n=1時已知結(jié)論成立。

(ii)假設(shè)n=k時結(jié)論成立,即

當(dāng)n=k+1時,由①得

即          ,

故n=k+1時結(jié)論也成立。

綜上,由(i)、(ii)可知對所有正整數(shù)n都成立。 

于是當(dāng)時,

又n=1時,所以的通項公式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年長沙一中一模文)(13分)  設(shè)數(shù)列的前項和為,且,其中為常數(shù)且

(1)證明:數(shù)列是等比數(shù)列;

(2)設(shè)數(shù)列的公比,數(shù)列滿足,

   求數(shù)列的通項公式;

(3)設(shè),,數(shù)列的前項和為,求證:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省佛山一中2010-2011學(xué)年高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本題滿分14分).設(shè)數(shù)列的前項和為,且
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)數(shù)列的前項和為,且滿足.

(1)求數(shù)列的通項公式;

(2)在數(shù)列的每兩項之間按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:兩項之間插入個數(shù),使這個數(shù)構(gòu)成等差數(shù)列,其公差為,求數(shù)列的前項和為.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市海淀區(qū)高三5月查漏補缺數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)數(shù)列的前項和為,且滿足.

(Ⅰ)求證:數(shù)列為等比數(shù)列;

(Ⅱ)求通項公式;

(Ⅲ)若數(shù)列是首項為1,公差為2的等差數(shù)列,求數(shù)列的前項和為.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新疆烏魯木齊一中高三第一次月考文科數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)設(shè)數(shù)列的前項和為,且對于

任意的正整數(shù)都成立,其中為常數(shù),且

(1)求證:數(shù)列是等比數(shù)列(4分)

(2)設(shè)數(shù)列的公比,數(shù)列滿足:)(,

 

,求證:數(shù)列是等差數(shù)列,并求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習(xí)冊答案