已知,若直線平分圓的周長,則

的最小值為

A.            B.         C.            D.1

 

【答案】

B

【解析】

試題分析:圓的方程化為標準方程:,圓心為

,由題意過圓心,所以,

所以

考點:直線與圓的位置關(guān)系;函數(shù)的最值.

點評:本題考查直線與圓的位置關(guān)系,以及基本不等式求最值,其中由直線平分圓

的周長得到直線過圓心是本題的突破點.同時本題根據(jù)題目條件構(gòu)造出了

可以利用基本不等式求最值的形式,屬于積定和最小型.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過A(1,-1),B(5,3),并且被直線m:3x-y=0平分圓的面積.
(Ⅰ)求圓C的方程;
(Ⅱ)若過點D(0,-1),且斜率為k的直線l與圓C有兩個不同的公共點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A(0,
2
)
為圓心,1為半徑的圓相切,又知C的一個焦點與A關(guān)于直線y=x對稱.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線y=mx+1與雙曲線C的左支交于A,B兩點,另一直線l經(jīng)過M(-2,0)及AB的中點,求直線l在y軸上的截距b的取值范圍;
(Ⅲ)若Q是雙曲線C上的任一點,F(xiàn)1F2為雙曲線C的左,右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標系與參數(shù)方程(本小題滿分10分)
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程是
x=cosα
y=sinα+1
(α是參數(shù)),若以O(shè)為極點,x軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線C的極坐標方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個焦點與A關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;
(3)設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案