精英家教網 > 高中數學 > 題目詳情
已知二次函數f(x)=x2-ax+c,(其中c>0).
(1)若函數f(x)為偶函數,求a的值;
(2)當f(x)為偶函數時,若函數g(x)=
f(x)
x
,指出g(x)在(0,+∞)上單調性情況,并證明之.
(1)f(x)為偶函數,
∴f(-x)=f(x),…(2分)
即(-x)2+ax+c=x2-ax+c,
即2ax=0恒成立                         …(3分)
∴a=0                                                                           …(4分)
(2)由(1),若f(x)為偶函數,則a=0,
g(x)=
f(x)
x
=
x2+c
x
=x+
c
x
,x∈(0,+∞)
當x∈(0,+∞)時,g(x)在x∈(0,
c
)上單調遞減,在x∈(
c
,+∞)上單調遞增,證明如下:…(5分)
設任意x1,x2∈(0,
c
),且x1<x2
g(x1)-g(x2)=(x1+
c
x1
)-(x2+
c
x2
)=(x1-x2)+(
c
x1
-
c
x2
)=(x1-x2(
x1x2-c
x1x2
)
         …(7分)
∵x1,x2∈(0,
c
),且x1<x2,
∴x1-x2<0,x1•x2<c
即x1•x2-c<0
∴(x1-x2(
x1x2-c
x1x2
)
>0,
即g(x1)-g(x2)>0
即g(x1)>g(x2
∴g(x)在(0,
c
)上單調遞減                                                       …(9分)
同理,可得g(x)在(
c
,+∞)上單調遞增                                             …(10分)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2+2(m-2)x+m-m2
(I)若函數的圖象經過原點,且滿足f(2)=0,求實數m的值.
(Ⅱ)若函數在區(qū)間[2,+∞)上為增函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數F(x)=f(x)-kx,x∈[-2,2],記此函數的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2-16x+q+3.
(1)若函數在區(qū)間[-1,1]上存在零點,求實數q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣州一模)已知二次函數f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數.設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知二次函數f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案