已知函數(shù).
(I)求函數(shù)的單調(diào)遞減區(qū)間;
(II)若在上恒成立,求實數(shù)的取值范圍;
(III)過點作函數(shù)圖像的切線,求切線方程
(I);(II) ;(III).
【解析】
試題分析:(I)本題函數(shù)式是一個乘積的形式.求函數(shù)的單調(diào)遞減區(qū)間,令導(dǎo)函數(shù)小于零,可求得x的范圍,本小題兩個知識點要注意.首先是定義域x>0;其次是含對數(shù)的不等式的解法.(II)關(guān)于恒成立的問題通過整理后用分離變量較好,最小值在的定義域上,通過求導(dǎo)可知函數(shù)的單調(diào)性即可求出函數(shù)g(x)的最大值.本小題涉及對數(shù)函數(shù)的求導(dǎo)和分式函數(shù)的求導(dǎo),要認真對待.(III)求函數(shù)的切線,首先判斷該點有沒有在函數(shù)圖像上.通過分析A點不在函數(shù)圖像上.通過假設(shè)切點的坐標.求出在切點的切線的斜率,通過A點和切點再算一次斜率即可得一個等式.通過研究該等式的解的情況即可得切線的方程.本小題要具備估算的能力.含對數(shù)的函數(shù)要關(guān)注定義域的范圍,通過求導(dǎo)了解函數(shù)的圖像的走向是解題的關(guān)鍵.
試題解析:(Ⅰ)得 2分
函數(shù)的單調(diào)遞減區(qū)間是; 4分
(Ⅱ)即
設(shè)則 6分
當時,函數(shù)單調(diào)遞減;
當時,函數(shù)單調(diào)遞增;
最小值實數(shù)的取值范圍是; 7分
(Ⅲ)設(shè)切點則即
設(shè),當時是單調(diào)遞增函數(shù) 10分
最多只有一個根,又
由得切線方程是. 12分
考點:1.通過求導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.2.函數(shù)的恒成立問題.3.函數(shù)的切線方程
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州市高三(上)12月質(zhì)量檢查數(shù)學(xué)試卷Ⅰ(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省臨沂市臨沭縣高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省實驗中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年天津市河北區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年北京市順義區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com