設(shè)的所有排列的集合為;,記

,;求.(其中表示集合的元素個數(shù)).


解析:

:我們一般地證明,若,對于前個正整數(shù)的所有排列構(gòu)成的集合,若,,則

下面用數(shù)學(xué)歸納法證明:

時,由排序不等式知,集合中的最小元素是,最大元素是

.又,

,

,所以,=共有11=個元素.因此,時命題成立.假設(shè)命題在)時成立;考慮命題在時的情況.對于的任一排列,恒取,得到的一個排列,

.由歸納假設(shè)知,此時取遍區(qū)間

上所有整數(shù).

再令,則,

再由歸納假設(shè)知,取遍區(qū)間

上的所有整數(shù).

因為,所以,取遍區(qū)間

上的所有整數(shù).即命題對也成立.由數(shù)學(xué)歸納法知,命題成立.

由于  ,從而,集合

的元素個數(shù)為.特別是,當時,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(t)=at2-
b
t+
1
4a
(t∈R)有最大值,且最大值為正實數(shù),集合A={x|
x-a
x
<0},集合B={x|x2<b2}
(1)求集合A和B;
(2)定義:“A-B={x∈A,且x∉B}”設(shè)a,b,x均為整數(shù),且x∈A.記P(E)為x取自集合A-B的概率,P(F)x取集合A∩B的概率.已知P(E)=
2
3
,P(F)=
1
3
.記滿足上述條件的所有a的值從小到大排列構(gòu)成的數(shù)列為{an},所有b的值從小到大排列構(gòu)成數(shù)列{bn}.
①求a1,a2,a3和b1,b2,b3;
②請寫出數(shù)列{an}和{bn}的通項公式(不必證明);
③如果在函數(shù)中f(t)中,a=an,b=bn,記f(t)的最大值為g(n),cn=
1-12g(n)
4g(n)
,Sn=c1c2+c2c3+…+cncn+1,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是集合{2s+2t|0≤s<t,且s,t∈Z}中所有的數(shù)從小到大排列成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12…,將數(shù)列{an}中各項按照上小下大,左小右大的原則排成如下等腰直角三角形數(shù)表:
3
5   6
9   10   12

則第四行四個數(shù)分別為
 
;且a2012=
 
(用2s+2t形式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)設(shè){an}是集合中所有的數(shù)從小到大排列成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,……

將數(shù)列{an}各項按照上小下大,左小右大的原則寫成如下的三角形數(shù)表:

(i)寫出這個三角形數(shù)表的第四行、第五行各數(shù);

(ii)求a100

(Ⅱ)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過150分)

設(shè){bn}是集合中所有的數(shù)從小到大排列成的數(shù)列,已知bk =1160,求k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

22.(Ⅰ)設(shè){an}是集合{2t+2s|0≤st,且stZ}中所有的數(shù)從小到大排列成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…….

將數(shù)列{an}各項按照上小下大,左小右大的原則寫成如下的三角形數(shù)表:

(。⿲懗鲞@個三角形數(shù)表的第四行、第五行各數(shù);

(ⅱ)求a100.

(Ⅱ)(本小題為附加題)

設(shè){bn}是集合{2t+2s+2r|0≤r<s<t,且r,s,tZ}中所有的數(shù)從小到大排列成的數(shù)列.

已知bk=1160,求k.

查看答案和解析>>

同步練習冊答案