【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x﹣1),且當(dāng)x∈(0,2)時(shí),f(x)=2x , 則f(log280)=

【答案】
【解析】解:由f(x)滿足f(x+1)=﹣f(x﹣1),

可得:f(x+1+1)=﹣f(x+1﹣1),即f(x+2)=﹣f(x).

∴f(x+2+2)=﹣f(x+2),即f(x+4)=f(x).

∴f(x)是周期函數(shù),周期T=4.

由f(log280)=f(4+log25)=f(log25).

當(dāng)x∈(0,2)時(shí),f(x)=2x,

那么:x﹣2∈(0,2)時(shí),可得x∈(2,4),則f(x﹣2)=﹣f(x).

即f(x)=﹣f(x﹣2)=﹣2x﹣2,

∵2<log25<4.

∴f(log25)= =

故f(log280)=

所以答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,他在《數(shù)學(xué)九章》中提出的多項(xiàng)式的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖是事項(xiàng)該算法的程序框圖,執(zhí)行該程序框圖,若輸入n,x的值分別為4,2,則輸出v的值為(
A.5
B.12
C.25
D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖的程序框圖,若程序運(yùn)行中輸出的一組數(shù)是(x,﹣12),則x的值為( 。

A.27
B.81
C.243
D.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax(lnx﹣1)(a≠0).
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a>0時(shí),設(shè)函數(shù)g(x)= x3﹣f(x),函數(shù)h(x)=g′(x),
①若h(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
②證明:ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 為奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某油庫(kù)的設(shè)計(jì)容量是30萬(wàn)噸,年初儲(chǔ)量為10萬(wàn)噸,從年初起計(jì)劃每月購(gòu)進(jìn)石油m萬(wàn)噸,以滿足區(qū)域內(nèi)和區(qū)域外的需求,若區(qū)域內(nèi)每月用石油1萬(wàn)噸,區(qū)域外前x個(gè)月的需求量y(萬(wàn)噸)與x的函數(shù)關(guān)系為y= (p>0,1≤x≤16,x∈N*),并且前4個(gè)月,區(qū)域外的需求量為20萬(wàn)噸.
(1)試寫(xiě)出第x個(gè)月石油調(diào)出后,油庫(kù)內(nèi)儲(chǔ)油量M(萬(wàn)噸)與x的函數(shù)關(guān)系式;
(2)要使16個(gè)月內(nèi)每月按計(jì)劃購(gòu)進(jìn)石油之后,油庫(kù)總能滿足區(qū)域內(nèi)和區(qū)域外的需求,且每月石油調(diào)出后,油庫(kù)的石油剩余量不超過(guò)油庫(kù)的容量,試確定m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公比為q的等比數(shù)列{an}的前6項(xiàng)和S6=21,且4a1 , ,a2成等差數(shù)列.
(1)求an
(2)設(shè){bn}是首項(xiàng)為2,公差為﹣a1的等差數(shù)列,記{bn}前n項(xiàng)和為T(mén)n , 求Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=3x2﹣4ax(a>0)與g(x)=2a2lnx+b有公共點(diǎn),且在公共點(diǎn)處的切線方程相同,則實(shí)數(shù)b的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形ABC中,9tanAtanB+tanBtanC+tanCtanA的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案