【題目】2019年1月1日,濟南軌道交通號線試運行,濟南軌道交通集團面向廣大市民開展“參觀體驗,征求意見”活動,市民可以通過濟南地鐵APP搶票,小陳搶到了三張體驗票,準備從四位朋友小王,小張,小劉,小李中隨機選擇兩位與自己一起去參加體驗活動,則小王被選中的概率為( )

A. B. C. D.

【答案】B

【解析】

將所有符合要求的情況全部列出,然后選出符合要求的情況,利用古典概型的概率公式,得到答案.

從四位朋友小王,小張,小劉,小李中隨機選擇兩位,全部的情況有:

(小王,小張)(小王,小劉)(小王,小李)(小張,小劉)(小張,小李)(小劉,小李),共6種

符合要求,即包含小王的情況有:(小王,小張)(小王,小劉)(小王,小李)共3種,

所以小王被選中的概率為

故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,若滿足,則稱函數(shù)型函數(shù)”.

1)判斷函數(shù)是否為型函數(shù),并說明理由;

2)設函數(shù),記為函數(shù)的導函數(shù).

①若函數(shù)的最小值為1,求的值;

②若函數(shù)型函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx,若關于x的方程f2x)﹣afx+aa20有四個不等的實數(shù)根,則a的取值范圍是(

A.B.(﹣,﹣1)∪[1,+∞

C.(﹣,﹣1)∪{1}D.(﹣1,0)∪{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,且,滿足條件的點的軌跡為曲線

1)求曲線的方程;

2)是否存在過點的直線,直線與曲線相交于兩點,直線軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠利用隨機數(shù)表對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001002,,599,600從中抽取60個樣本,如下提供隨機數(shù)表的第4行到第6行:

32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42

84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04

32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45

若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號  

A. 522B. 324C. 535D. 578

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與橢圓有一個相同的焦點,過點且與軸不垂直的直線與拋物線交于兩點,關于軸的對稱點為.

(1)求拋物線的方程;

(2)試問直線是否過定點?若是,求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是邊長為2的正方形,,的中點,點上,平面,的延長線上,且.

(1)證明:平面.

(2)過點的平行線,與直線相交于點,當點在線段上運動時,二面角能否等于?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正三角形所在平面與梯形所在平面垂直, , , 為棱的中點.

(1)求證: 平面

(2)若直線與平面所成的角為30°,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,對于,定義的差為;之間的距離為.

1)若,試寫出所有可能的,;

2,證明:;

3三個數(shù)中是否一定有偶數(shù)?證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案