已知函數(shù)數(shù)學(xué)公式,(1)證明:|t+x|+|t-x|<|f(tx+1)|
(2)設(shè)x是正實(shí)數(shù),求證:[f(x+1)]n-f(xn+1)≥2n-2.

證明:(1)∵,∴,

當(dāng)且僅當(dāng)|tx|=1時,上式取等號.
∵0<|x|<1,0<|t|<1,
∴|tx|≠1,
∴|f(tx+1)|>2s=(|t+x|+|t-x|2=2(t2+x2)+2|t2-x2|-(|t+x|+|t-x|)2=2(t2+x2)+2|t2-x2|
當(dāng)|t|≥|x|時,s=4t2≤4;當(dāng)|t|≤|x|時s=4x2<4
∴|t+x|+|t-x|≤2<|f(tx+1)|即|t+x|+|t-x|<|f(tx+1)|
(2)n=1時,結(jié)論顯然成立
當(dāng)n≥2時,=

=Cn1+Cn2+…+Cnn-1=2n-2.
分析:(1)由題設(shè)知,由0<|x|<1,0<|t|<1,知|tx|≠1,|f(tx+1)|>2s=(|t+x|+|t-x|2)=2(t2+x2)+2|t2-x2|-(|t+x|+|t-x|)2=2(t2+x2)+2|t2-x2|,由此能證明|t+x|+|t-x|<|f(tx+1)|.
(2),=Cn1+Cn2+…+Cnn-1=2n-2.
點(diǎn)評:本題考查不等式的證明和應(yīng)用,解題時要注意公式的合理應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)其中

(1)證明函數(shù)f(x)的圖像在y軸的一側(cè);

(2)求函數(shù)的圖像的公共點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市甌海中學(xué)高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)證明f(x)為奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義加以證明;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

已知函數(shù)

(1)證明:對定義域內(nèi)的所有x,都有

(2)當(dāng)fx)的定義域?yàn)閇a+, a+1]時,求fx)的值域。.

(3)設(shè)函數(shù)g(x) = x2+| (xafx) | , 若,求g(x)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省高一期中考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)已知函數(shù)

(1)證明f(x)為奇函數(shù);

(2)判斷f(x)的單調(diào)性,并用定義加以證明;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省鄭州外國語學(xué)校高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題8分)已知函數(shù)

(1)證明上是減函數(shù);

(2)當(dāng)時,求的最小值和最大值.

 

查看答案和解析>>

同步練習(xí)冊答案