(08年銀川一中三模文)(12分) 如圖,在四棱錐S-ABCD中,SA=AB=2,SB=SD=2,底面ABCD是菱形,且∠ABC=60°,E為CD的中點(diǎn).
(1)證明:CD⊥平面SAE;
(2)側(cè)棱SB上是否存在點(diǎn)F,使得CF∥平面SAE?并證明你的結(jié)論.
解析:證明:(Ⅰ) 是菱形,,
,為正三角形, ………………2分
又為的中點(diǎn),
,
則有,,
, ………………4分
又,底面,
由,,,
平面 …………6分
(Ⅱ)為側(cè)棱的中點(diǎn)時(shí),平面. ………………7分
證法一:設(shè)為的中點(diǎn),連,
則是的中位線(xiàn),
且,又且,
且,四邊形為平行四邊形, ……………10分
,
平面,平面,
平面. ………………12分
證法二:設(shè)為的中點(diǎn),連,則是的中位線(xiàn),
,
平面,平面,
平面. ………………8分
同理,由,得平面.
又,
平面平面, ………………10分
又平面,
平面. ……………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年銀川一中三模理)(12分)
設(shè)函數(shù),其中向量, ,x∈R.
(I)求的值及函數(shù)的最大值;
(II)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年銀川一中三模理)(12分)
已知函數(shù)
(I)當(dāng)的單調(diào)區(qū)間和極值;
(II)若函數(shù)在[1,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年銀川一中三模) 自圓O外一點(diǎn)P引切線(xiàn)與圓切于點(diǎn)A,M為PA中點(diǎn),過(guò)M引割線(xiàn)交圓于B,C兩點(diǎn).求證:∠MCP=∠MPB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年銀川一中三模文) (12分)現(xiàn)有編號(hào)分別為1,2,3,4,5的五個(gè)不同的物理題和編號(hào)分別為6,7,8,9的四個(gè)不同的化學(xué)題.甲同學(xué)從這九個(gè)題中一次隨機(jī)抽取兩道題,每題被抽到的概率是相等的,用符號(hào) (x,y)表示事件“抽到的兩題的編號(hào)分別為x、y,且x<y”.
(1)共有多少個(gè)基本事件?并列舉出來(lái);
(2)求甲同學(xué)所抽取的兩題的編號(hào)之和小于17但不小于11的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年銀川一中三模文)(12分) 已知橢圓C:(a>b>0),點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),點(diǎn)P(2,)在直線(xiàn)x=上,且|F1F2|=|PF2|,直線(xiàn):y=kx+m為動(dòng)直線(xiàn),且直線(xiàn)與橢圓C交于不同的兩點(diǎn)A、B。
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q,滿(mǎn)足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com