14.已知P是平行四邊形ABCD所在平面外的一點(diǎn),M、N分別是AB、PC的中點(diǎn),若MN=BC=4,PA=4$\sqrt{3}$,則異面直線PA與MN所成角的大小是(  )
A.30°B.45°C.60°D.90°

分析 連接AC,并取其中點(diǎn)為O,連接OM,ON,則∠ONM就是異面直線PA與MN所成的角,由此能求出異面直線PA與MN所成的角.

解答 解:連接AC,并取其中點(diǎn)為O,連接OM,ON
則OM$\underset{∥}{=}$BC,ON$\underset{∥}{=}$PA,
∴∠ONM就是異面直線PA與MN所成的角.
由MN=BC=4,PA=4$\sqrt{3}$,
得OM=2,ON=2$\sqrt{3}$,MN=4,
cos∠ONM=$\frac{O{N}^{2}+M{N}^{2}-O{M}^{2}}{2×ON×MN}$=$\frac{12+16-4}{2×2\sqrt{3}×4}$=$\frac{\sqrt{3}}{2}$.
∴∠ONM=30°.
即異面直線PA與MN成30°的角.
故選:A.

點(diǎn)評(píng) 本題考查異面直線所成角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖如圖所示:
(1)分別指出甲乙兩人該賽季比賽得分的中位數(shù);
(2)不計(jì)算,由莖葉圖判斷甲、乙兩人這幾場(chǎng)比賽得分的平均數(shù)和標(biāo)準(zhǔn)差的大小,若從甲乙兩人中選派一人參加更高一級(jí)的比賽,你認(rèn)為選誰更合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若cos$\frac{A}{2}$=cos$\frac{B}{2}$,則A與B什么關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.由①正方形的對(duì)角線相等;②矩形的對(duì)角線相等;③正方形是矩形.寫一個(gè)“三段論”形式的推理,則作為大前提、小前提和結(jié)論的依次為②③①(寫序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,$\frac{π}{2}$)上是減函數(shù)的是( 。
A.y=x3B.y═-sinxC.y=2x+1D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為了整頓電動(dòng)車秩序,?谑锌紤]將對(duì)電動(dòng)車闖紅燈進(jìn)行處罰.為了更好地了解情況,在騎車人中隨機(jī)選取了200人進(jìn)行調(diào)查,得到如表數(shù)據(jù):
處罰金額x(單位:元)05101520
會(huì)闖紅燈的人數(shù)y8050402010
(Ⅰ)現(xiàn)用以上數(shù)據(jù)所得頻率約等于概率,若處罰10元和20元時(shí),電動(dòng)車闖紅燈的概率差是多少?
(Ⅱ)如果從5種處罰金額中隨機(jī)抽取2種不同的金額進(jìn)行處罰.
①求這兩種金額之和不低于20元的概率;
②若用X表示這兩種金額之和,求X的數(shù)學(xué)期望和分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+sin2x.
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈(0,$\frac{π}{2}$)時(shí),求函數(shù)f(x)的值域;
(3)當(dāng)x∈[0,2π]時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$\frac{4+3i}{2-i}$=( 。
A.1-2iB.1+2iC.$\frac{5}{3}$-$\frac{10}{3}$iD.$\frac{5}{3}$+$\frac{10}{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某同學(xué)通過選拔考試進(jìn)入學(xué)校的“體育隊(duì)”和“文藝隊(duì)”,進(jìn)入這兩個(gè)隊(duì)成功與否是相互獨(dú)立的,能同時(shí)進(jìn)入這兩個(gè)隊(duì)的概率是$\frac{1}{24}$,至少能進(jìn)入一個(gè)隊(duì)的概率是$\frac{3}{8}$,并且能進(jìn)入“體育隊(duì)”的概率小于能進(jìn)入“文藝隊(duì)”的概率.
(Ⅰ)求該同學(xué)通過選拔進(jìn)入“體育隊(duì)”的概率p1和進(jìn)入“文藝隊(duì)”的概率p2;
(Ⅱ)學(xué)校對(duì)于進(jìn)入“體育隊(duì)”的同學(xué)增加2個(gè)選修課學(xué)分,對(duì)于進(jìn)入“文藝隊(duì)”的同學(xué)增加1個(gè)選修課學(xué)分,求該同學(xué)獲得選修課加分分?jǐn)?shù)X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案