(2008•鹽城一模)一枚半徑為1的硬幣隨機落在邊長為3的正方形所在平面內(nèi),且硬幣一定落在正方形內(nèi)部或與正方形有公共點,則硬幣與正方形沒有公共點的概率是
1
21+π
1
21+π
分析:由題意知本題是一個幾何概型,概率等于面積之比,根據(jù)題意算出試驗包含的總面積和符合條件的面積,兩者求比值,得到要求的概率.
解答:解:考慮圓心的運動情況.
因為每次投擲硬幣一定落在正方形內(nèi)部或與正方形有公共點,所以圓心的最大限度為原正方形向外再擴張1個圓的半徑的區(qū)域,且四角為四分之圓弧;
此時總面積為:3×3+4×3×1+π×12=21+π;
完全落在最大的正方形內(nèi)時,圓心的位置在1為邊長的正方形內(nèi),
其面積為:1×1=1;
∴硬幣落下后完全在最大的正方形內(nèi)的概率為:
1
21+π

故答案為:
1
21+π
點評:本題考查幾何概型和求面積的方法,幾何概型和古典概型是高中必修中學(xué)習(xí)的高考時常以選擇和填空出現(xiàn),同時考查了分析問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•鹽城一模)曲線y=e
12
x
在點(4,e2)處的切線與坐標(biāo)軸所圍三角形的面積為
e2
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•鹽城一模)設(shè)e1,e2分別為具有公共焦點F1與F2的橢圓和雙曲線的離心率,P為兩曲線的一個公共點,且滿足
PF1
PF2
=0,則
e
2
1
+
e
2
2
(e1e2)2
的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•鹽城一模)甲、乙、丙三名射箭運動員在某次測試中各射箭20次,三人的測試成績?nèi)缦卤?br />
甲的成績
環(huán)數(shù) 7 8 9 10
頻數(shù) 5 5 5 5
乙的成績
環(huán)數(shù) 7 8 9 10
頻數(shù) 6 4 4 6
丙的成績
環(huán)數(shù) 7 8 9 10
頻數(shù) 4 6 6 4
s1,s2,s3分別表示甲、乙、丙三人成績的標(biāo)準(zhǔn)差,則s1,s2,s3的大小順序是
s2>s1>s3
s2>s1>s3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•鹽城一模)已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=a(x+1)(x-a),若f(x)在x=a處取到極大值,則a的取值范圍是
(-1,0)
(-1,0)

查看答案和解析>>

同步練習(xí)冊答案