已知直線l過點(0,7),且與直線y=-4x+2平行,則直線l的方程為


  1. A.
    y=-4x-7
  2. B.
    y=4x-7
  3. C.
    y=-4x+7
  4. D.
    y=4x+7
C
分析:根據(jù)兩直線平行斜率相等,設(shè)過P與直線l平行的直線方程是 y=-4x+m把點P(0,7)代入可解得 m,從而得到所求的直線方程,
解答:設(shè)過P與直線l平行的直線方程是y=-4x+m,
把點P(0,7)代入可解得 m=7,
故所求的直線方程是y=-4x+7.
故選C.
點評:本題考查根據(jù)兩直線平行和垂直的性質(zhì),利用待定系數(shù)法求直線方程的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(0,
5
4
),且斜率為
1
2
,拋物線C:y2=2px(p大于0)的頂點關(guān)于直線l的對稱點在該拋物線的準(zhǔn)線上.
(1)求拋物線C的方程;
(2)設(shè)A、B是拋物線C上兩個動點,過A作平行于x軸的直線m,直線OB與直線m交于點N,若
OA
OB
+P2=0
(O為原點,A、B異于原點),試求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(0,2),且與拋物線y2=4x交于A(x1,y1)、B(x2,y2)兩點,則
1
y1
+
1
y2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、已知直線l過點(0,7),且與直線y=-4x+2平行,則直線l的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG∥AB.
(Ⅰ)求三角形ABC頂點C的軌跡方程;
(Ⅱ)設(shè)頂點C的軌跡為D,已知直線L過點(0,1)并且與曲線D交于P、N兩點,若O為坐標(biāo)原點,滿足OP⊥ON,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(0,-1),且與直線y=-x+2垂直,則直線l的方程為(  )

查看答案和解析>>

同步練習(xí)冊答案