已知:M={a|函數(shù)在[]上是增函數(shù)},N={b|方程有實數(shù)解},設D=,且定義在R上的奇函數(shù)在D內(nèi)沒有最小值,則m的取值范圍是 .
m>
解析試題分析:先確定出集合MN的范圍,求出集合D的范圍.再根據(jù)在D內(nèi)沒有最小值,對函數(shù)的最小值進行研究,可先求其導數(shù),利用導數(shù)研究出函數(shù)的單調(diào)性,確定出函數(shù)的最小值在區(qū)間D的左端點取到即可,由于直接研究有一定困難,可將函數(shù)變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/d/jgabt.png" style="vertical-align:middle;" />,構造新函數(shù)h(x)=,將研究原來函數(shù)沒有最小值的問題轉化為新函數(shù)沒有最大值的問題,利用導數(shù)工具易確定出新函數(shù)的最值,從而解出參數(shù)m的取值范圍m>,若m≤0,可得函數(shù)f(x)在D上是減函數(shù),函數(shù)在右端點處取到最小值,不合題意;若m>0,令h(x)=,則在D內(nèi)沒有最小值可轉化為h(x)在D內(nèi)沒有最大值,下對h(x)在D內(nèi)的最大值進行研究,可知答案為m>。
考點:函數(shù)的單調(diào)性與其導函數(shù)的正負
點評:本題主要考查函數(shù)的單調(diào)性與其導函數(shù)的正負情況之間的關系,三角函數(shù)的周期求法及對三角函數(shù)圖象特征的理解,指數(shù)函數(shù)的值域及集合的運算.考查了轉化的思想及分類討論的思想,計算的能力,本題綜合性強涉及到的知識點較多,屬于綜合題中的難題
科目:高中數(shù)學 來源: 題型:填空題
設A是整數(shù)集的一個非空子集,對于,則k是A的一個“孤立元”,給定,由S的3個元素構成的所有集合中,不含“孤立元”的集合共有 個。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com