【題目】已知橢圓的離心率為,焦距為,直線過橢圓的左焦點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線軸交于點是橢圓上的兩個動點,的平分線在軸上,.試判斷直線是否過定點,若過定點,求出定點坐標(biāo);若不過定點,請說明理由.

【答案】(1);(2)過定點

【解析】

(1)因為直線過橢圓的左焦點,故令,得,又因為離心率為,從而求出,又因為,求出的值,從而求出橢圓的標(biāo)準(zhǔn)方程;

(2)先求出點的坐標(biāo),設(shè)直線的方程為,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,設(shè),,得到,又因為的平分線在軸上,所以,從而求出的值,得到直線的方程為過定點坐標(biāo).

解:(1)因為直線過橢圓的左焦點,故令,得,

,解得.又,解得.

∴橢圓的標(biāo)準(zhǔn)方程為:.

(2)由(1)得,直線的方程為

得,,即.設(shè)直線的方程為

聯(lián)立方程組,消去得,

設(shè),,,

則直線的斜率,

所以

的平分線在軸上,,即

,,.

即直線的方程為,過定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和滿足,.數(shù)列的前項和為,則滿足的最小的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過其焦點的直線與拋物線相交于、兩點,滿足.

1)求拋物線的方程;

2)已知點的坐標(biāo)為,記直線、的斜率分別為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我們的教材必修一中有這樣一個問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:

方案一:每天回報元;

方案二:第一天回報元,以后每天比前一天多回報元;

方案三:第一天回報元,以后每天的回報比前一天翻一番.

記三種方案第天的回報分別為,.

1)根據(jù)數(shù)列的定義判斷數(shù)列,的類型,并據(jù)此寫出三個數(shù)列的通項公式;

2)小王準(zhǔn)備做一個為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的圖象在處的切線為為自然對數(shù)的底數(shù))

(1)求的值;

(2)若,且對任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表列出了1058歲兒童的體重x(單位kg)(這是容易測得的)和體積y(單位dm3)(這是難以測得的),繪制散點圖發(fā)現(xiàn),可用線性回歸模型擬合yx的關(guān)系:

體重x

17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10

體積y

16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70

(1)y關(guān)于x的線性回歸方程(系數(shù)精確到0.01);

(2)5歲兒童的體重為13.00kg,估測此兒童的體積.

附注:參考數(shù)據(jù):,,,

,,137×14=1918.00

參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)求曲線的直角坐標(biāo)方程;

2)設(shè)曲線與直線交于點,點的坐標(biāo)為(3,1),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,為棱的中點,.

(1)證明:平面;

(2)設(shè)二面角的正切值為,,求異面直線所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案