如圖,已知直線與拋物線相切于點,且與軸交于點,為坐標原點,定點的坐標為.

(1)若動點滿足,求點的軌跡;
(2)若過點的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點之間),試求△OBE與△OBF面積之比的取值范圍.

(I)點M的軌跡為以原點為中心,焦點在x軸上,長軸長為,短軸長為2的橢圓
(II)(3-2, 1)

解析試題分析:(I)由,∴直線l的斜率為
故l的方程為,∴點A坐標為(1,0)
   則,

整理,得   
∴點M的軌跡為以原點為中心,焦點在x軸上,長軸長為,短軸長為2的橢圓
(II)如圖,由題意知直線l的斜率存在且不為零,設l方程為y=k(x-2)(k≠0)①
將①代入,整理,得

,
由△>0得0<k2<.  設E(x1,y1),F(xiàn)(x2,y2)
 ②   令,由此可得

由②知

    
∴△OBE與△OBF面積之比的取值范圍是(3-2, 1)
考點:本題主要考查橢圓標準方程,直線與橢圓的位置關系,平面向量的坐標運算,簡單不等式解法。
點評:中檔題,曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題求橢圓標準方程時,主要運用“直接法”,將向量關系用坐標表示,達到解題目的。(2)作為研究直線與橢圓位置關系下,三角形面積之比的范圍問題,應用韋達定理及向量,建立了的不等式,進一步使問題得解。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點,與橢圓分別交于點,各點均不重合,且滿足. 當時,試證明直線過定點.過定點(1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知離心率為的橢圓上的點到左焦點的最長距離為

(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點軸上,且使得的一條內角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為,且||=2,
點(1,)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過的直線與橢圓C相交于A,B兩點,若AB的面積為,求以為圓心且與直線相切是圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的極坐標方程是,以極點為原點,極軸為軸正方向建立平面直角坐標系,直線的參數(shù)方程是:(為參數(shù)).
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)設直線與曲線交于,兩點,點的直角坐標為,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定直線動圓M與定圓外切且與直線相切.
(1)求動圓圓心M的軌跡C的方程;
(2)設A、B是曲線C上兩動點(異于坐標原點O),若求證直線AB過一定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左右焦點分別為、,離心率,直線經(jīng)過左焦點.
(1)求橢圓的方程;
(2)若為橢圓上的點,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

坐標系與參數(shù)方程在直角坐標系中,直線的參數(shù)方程為(t 為參數(shù))。在極坐標系(與直角坐標系取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為
(1)求圓C的直角坐標方程;
(2)設圓C與直線交于點A,B,若點P的坐標為(2,),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍

查看答案和解析>>

同步練習冊答案