如圖,橢圓的離心率為軸被曲線截得的線段長等于的長半軸長。

(1)求,的方程;
(2)設(shè)軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線相交于點(diǎn)A,B,直線MA,MB分別與相交與D,E.
①證明:;
②記△MAB,△MDE的面積分別是.問:是否存在直線,使得=?請(qǐng)說明理由。
(1)
(2)①見解析      ②滿足條件的直線存在,且有兩條,其方程分別為
(1)由題意知,從而,又,解得
,的方程分別為。
(2)①由題意知,直線的斜率存在,設(shè)為,則直線的方程為.
,
設(shè),則是上述方程的兩個(gè)實(shí)根,于是。
又點(diǎn)的坐標(biāo)為,所以

,即。
②設(shè)直線的斜率為,則直線的方程為,由解得,則點(diǎn)的坐標(biāo)為
又直線的斜率為 ,同理可得點(diǎn)B的坐標(biāo)為.
于是
,
解得,則點(diǎn)的坐標(biāo)為;
又直線的斜率為,同理可得點(diǎn)的坐標(biāo)
于是
因此
由題意知,解得 或
又由點(diǎn)的坐標(biāo)可知,,所以
故滿足條件的直線存在,且有兩條,其方程分別為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓.
(1)我們知道圓具有性質(zhì):若為圓O:的弦AB的中點(diǎn),則直線AB的斜率與直線OE的斜率的乘積為定值。類比圓的這個(gè)性質(zhì),寫出橢圓的類似性質(zhì),并加以證明;
(2)如圖(1),點(diǎn)B為在第一象限中的任意一點(diǎn),過B作的切線,分別與x軸和y軸的正半軸交于C,D兩點(diǎn),求三角形OCD面積的最小值;
(3)如圖(2),過橢圓上任意一點(diǎn)的兩條切線PM和PN,切點(diǎn)分別為M,N.當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請(qǐng)說明理由.
    
圖(1)                                    圖(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·泰安模擬]曲線=1(m<6)與曲線=1(5<n<9)的(  )
A.焦距相等B.離心率相等
C.焦點(diǎn)相同D.準(zhǔn)線相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•浙江)已知橢圓C1=1(a>b>0)與雙曲線C2:x2=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點(diǎn).若C1恰好將線段AB三等分,則(  )
A.a(chǎn)2=B.a(chǎn)2=3C.b2=D.b2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2013•浙江)如圖F1、F2是橢圓C1+y2=1與雙曲線C2的公共焦點(diǎn)A、B分別是C1、C2在第二、四象限的公共點(diǎn),若四邊形AF1BF2為矩形,則C2的離心率是(  )

A.       B.       C.       D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓)過點(diǎn),且橢圓的離心率為
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過作直線.求直線是否恒過定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓=1的焦點(diǎn)為F1和F2,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)在y軸上,那么|PF1|是|PF2|的( 。
A.7倍B.5倍C.4倍D.3倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=kx+1,當(dāng)k變化時(shí),此直線被橢圓截得的最大弦長等于(  )
A.4B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓與雙曲線有相同的焦點(diǎn),則的值是(  )
A.B.1或C.1或D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案