11.已知x,y∈R,且滿足$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}\right.$,則z=|x+2y|的最大值為( 。
A.10B.8C.6D.3

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.

解答 解:作出不等式組$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}\right.$,對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分)
由z=|x+2y|,
平移直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由圖象可知當(dāng)直線y=-$\frac{1}{2}$x-$\frac{1}{2}$z經(jīng)過點(diǎn)A時(shí),z取得最大值,
此時(shí)z最大.
即A(-2,-2),
代入目標(biāo)函數(shù)z=|x+2y|得z=2×2+2=6
故選:C.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標(biāo)函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.19、如圖,在直角梯形ABCD中,AB∥CD,且AB=AD=2,CD=4,四邊形ADE1F1是正方形,且平面ADE1F1⊥平面ABCD,M是E1C的中點(diǎn).
(1)證明:BM∥平面ADE1F1
(2)求三棱錐D-BME1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出的k值為( 。
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\frac{2i-1}{1+ai}\;(a∈R)$是純虛數(shù),則a=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在樣本的頻率分布直方圖中,一共有m(m≥3)個(gè)小矩形,第3個(gè)小矩形的面積等于其余m-1各小矩形面積之和的$\frac{1}{4}$,且樣本容量為100,則第3組的頻數(shù)是( 。
A.10B.20C.25D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知在等比數(shù)列{an}中,a1+2a2=1,a${\;}_{3}^{2}$=2a2a5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2a1+log2a2+…+log2an,求數(shù)列{$\frac{1}{_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,且m?α,n?β(  )
A.若m,n是異面直線,則α與β相交B.若m∥β,n∥α則α∥β
C.若m⊥n,則α⊥βD.若m⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線x+y-1=0與2x+2y+3=0的距離是( 。
A.$\frac{{5\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{4}$C.$2\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)全集U=R,A={x|0.3x<1},B={x|x<x2-2},則A∩(∁UB)=( 。
A.{x|-1<x<0}B.{x|0<x≤2}C.{x|0<x<2}D.{x|0<x≤1}

查看答案和解析>>

同步練習(xí)冊(cè)答案