13.在平面直角坐標(biāo)系xOy中,點(diǎn)P(1,4)是角α終邊上一點(diǎn),將射線OP繞坐標(biāo)原點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)θ(0<θ<π)角后到達(dá)角$\frac{3}{4}$π的終邊,則tanθ=$\frac{5}{3}$.

分析 利用任意角的三角函數(shù)的定義求得tanα=4,再根據(jù)tan(α+θ)=-1,利用兩角和的正切公式,求得tanθ的值.

解答 解:由題意可得,α+θ=$\frac{3π}{4}$,tanα=4,∴tan(α+θ)=-1,
即$\frac{tanα+tanθ}{1-tanαtanθ}$=-1,即 $\frac{4+tanθ}{1-4tanθ}$=-1,求得tanθ=$\frac{5}{3}$,
故答案為:$\frac{5}{3}$.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.點(diǎn)P(2,5)到直線y=-3x的距離d等于(  )
A.0B.$\frac{11}{10}\sqrt{10}$C.$\sqrt{3}$+52D.$\sqrt{3}$-52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{2}$+y2=1,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn).
(Ⅰ)求橢圓C的長(zhǎng)軸和短軸的長(zhǎng),離心率e,左焦點(diǎn)F1;
(Ⅱ)已知P是橢圓上一點(diǎn),且PF1⊥PF2,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{5}}{3}$,左頂點(diǎn)、上頂點(diǎn)分別為A,B,△OAB的面積為3(點(diǎn)O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)若P、Q分別是AB、橢圓C上的動(dòng)點(diǎn),且$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$(λ<0),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.(log23+log227)×(log44+log4$\frac{1}{4}$)的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=m,|$\overrightarrow{a}$+$\overrightarrow$|=2.
(1)若|$\overrightarrow{a}$+2$\overrightarrow$|=3,求實(shí)數(shù)m的值;
(2)若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為$\frac{2π}{3}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)$y={cos^2}(x-\frac{π}{6})$的一條對(duì)稱軸為( 。
A.$x=-\frac{π}{6}$B.$x=\frac{5π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)的定義域?yàn)镈,若對(duì)于?a,b,c∈D,f(a),f(b),f(c)分別為某個(gè)三角形的邊長(zhǎng),則稱f(x)為“三角形函數(shù)”.給出下列四個(gè)函數(shù):
①f(x)=lnx(e2≤x≤e3);②f(x)=4-cosx;③$f(x)={x^{\frac{1}{2}}}(1<x<4)$;④$f(x)=\frac{e^x}{{{e^x}+1}}$.
其中為“三角形函數(shù)”的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x+$\frac{1}{|x|}$.
(1)求解不等式f(x)≥2x;
(2)$\frac{1}{{x}^{2}}$+x2+2mf(x)≥0在x∈[1,2]上恒成立,求m的取值范圍;
(3)設(shè)函數(shù)g(x)=x2+(-3+c)x+c2,若方程g(f(x))=0有6個(gè)實(shí)根,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案