橢圓短軸的一個端點與兩個焦點組成一個正三角形,焦點到橢圓長軸端點的最短距離為,求此橢圓的標準方程。

解:當焦點在x軸時,設(shè)橢圓方程為,由題意知a=2c,a-c=
解得a=,c=,所以b2=9,所求的橢圓方程為
同理,當焦點在y軸時,所求的橢圓方程為.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
5
2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知動直線y=k(x+1)與橢圓C相交于A、B兩點,若線段AB中點的橫坐標為-
1
2
,求斜率k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓短軸的一個端點與兩個焦點組成一個正三角形,焦點到橢圓長軸端點的最短距離為
3
,求此橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的離心率為
6
3
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為 
5
2
3

(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A、B兩點.
①若線段AB中點的橫坐標為-
1
2
,求斜率k的值; 
②x軸上是否存在定點M,使
MA
MB
為定值?若存在,試求出點M的坐標和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓W的中心在原點,焦點在X軸上,離心率為
6
3
,橢圓短軸的一個端點與兩焦點構(gòu)成的三角形的面積為2
2
,橢圓W的左焦點為F,過x軸的一點M(-3,0)任作一條斜率不為零的直線L與橢圓W交于不同的兩點A、B,點A關(guān)于X軸的對稱點為C.
(1)求橢圓W的方程;
(2)求證:
CF
FB
(λ∈R);
(3)求△MBC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
3
,過橢圓C的右焦點的動直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)若線段AB中點的橫坐標為
1
2
,求直線l的方程;
(3)若線段AB的垂直平分線與x軸相交于點D.設(shè)弦AB的中點為P,試求
|
DP|
|
AB|
的取值范圍.

查看答案和解析>>

同步練習冊答案