(本題滿分13分)
工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人。現(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.
(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?
(Ⅱ)若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為,其中是的一個(gè)排列,求所需派出人員數(shù)目的分布列和均值(數(shù)學(xué)期望);
(Ⅲ)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最小,并證明之。
【解析】:(Ⅰ)無論怎樣的順序派出人員,任務(wù)不能被完成的概率都是,所以任務(wù)能被完成的概率為=
(Ⅱ)當(dāng)依次派出的三個(gè)人各自完成任務(wù)的概率分別為時(shí),所需派出人員數(shù)目的分布列為
| 1 | 2 | 3 |
P |
|
|
|
所需派出人員數(shù)目的均值(數(shù)字期望)是
(Ⅲ)(方法一)由(2)的結(jié)論知,當(dāng)一甲最先、乙次之、丙最后的順序派人時(shí),=,
依據(jù)常理,優(yōu)先派出完成任務(wù)概率最大的人,可減少派出人員數(shù)目的均值.
下面證明:對(duì)與,,的任意排列,,,都有≥.
事實(shí)上,
=
=
=
≥≥0,
即≥成立.
(方法二):①可將(Ⅱ)中所求的改寫為,若交換前兩人的派出順序,則變?yōu)?sub>,可見,當(dāng)時(shí),交換前兩人的派出順序可減少均值;
②也可將(Ⅱ)中所求的改寫為,交換后兩人的派出順序,則變?yōu)?sub>,由此可見,若保持派出的人選不變,當(dāng)時(shí),交換后兩人的派出順序也可減少均值.
綜合①②可知,當(dāng)(,,)=(,,)時(shí),達(dá)到最小,
即完成任務(wù)概率最大的人優(yōu)先派出,可減少所需派出人員數(shù)目的均值,這一結(jié)論是合乎常理的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆天津市高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)
已知集合,,.
(1) 求,; (2) 若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆浙江省寧波萬里國(guó)際學(xué)校高三上期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)的三個(gè)內(nèi)角依次成等差數(shù)列.
(Ⅰ)若,試判斷的形狀;
(Ⅱ)若為鈍角三角形,且,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市朝陽(yáng)區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿分13分)
在銳角中,,,分別為內(nèi)角,,所對(duì)的邊,且滿足.
(Ⅰ)求角的大。
(Ⅱ)若,且,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:重慶市09-10學(xué)年高二下學(xué)期5月月考(數(shù)學(xué)文) 題型:解答題
(本題滿分13分)在展開式中,求:
(1)第6項(xiàng); (2) 第3項(xiàng)的系數(shù); (3)常數(shù)項(xiàng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(一級(jí)學(xué)校) 題型:解答題
(本題滿分13分)
如圖,在五面體ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,AF=AB=BC=FE=AD.
(Ⅰ)求異面直線BF與DE所成角的余弦值;
(Ⅱ)在線段CE上是否存在點(diǎn)M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點(diǎn)M的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com