甲廠以x千克/小時(shí)的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得利潤是100(5x+1-)元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)求函數(shù)的最小值;
(2)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓c:(a>b>0)的離心率為,過其右焦點(diǎn)F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點(diǎn)分別為A,B,點(diǎn)P是直線x=1上的動(dòng)點(diǎn),直線PA與橢圓的另一個(gè)交點(diǎn)為M,直線PB與橢圓的另一個(gè)交點(diǎn)為N,求證:直線MN經(jīng)過一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)為偶函數(shù).
(1)求的解析式;
(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)設(shè),,,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(2)設(shè),若對(duì)任意、,有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABCD是正方形空地,邊長為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD、AB距離分別為9m、3m.某廣告公司計(jì)劃在此空地上豎一塊長方形液晶廣告屏幕MNEF,MN∶NE=16∶9.線段MN必須過點(diǎn)P,端點(diǎn)M、N分別在邊AD、AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1)用x的代數(shù)式表示AM;
(2)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(3)當(dāng)x取何值時(shí),液晶廣告屏幕MNEF的面積S最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=|2x-1-1|.
(1)作出函數(shù)y=f(x)的圖象;
(2)若a<c,且f(a)>f(c),求證:2a+2c<4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩函數(shù)f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k為實(shí)數(shù).
(1)對(duì)任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范圍.
(2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范圍.
(3)對(duì)任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com